Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионно-молекулярные реакции изотопного обмена

    Д. Н. Курсанов, В. Н. Сеткина и В. Ф. Лаврушин [239] связывают возникновение окраски сернокислотного слоя в опытах с изопарафинами с образованием карбониевых ионов в результате окисления метинового водорода серной кислотой. В то же время, как установили Гордон и Барвелл [166], скорость обмена водорода в углеводородах с одной боковой метильной группой уменьшается по мере удлинения цепи атомов углерода, особенно для веществ, содержащих от 8 до 12 атомов углерода. Напротив, степень интенсивности окраски кислотного слоя прн этом возрастает она отсутствует в случае 2-метилпентана, слаба в опытах с 3-метилгексаном, значительна при реакции с 3-метилгептаном и очень сильна в системе, содержащей 3-метилундекан. Образование двуокиси серы также менее ярко выражено, когда берут углеводороды с низким молекулярным весом. Следовательно, нет прямой зависимости между окраской, степенью окисления (выделение двуокиси серы) и скоростью изотопного обмена водорода. В этой связи можпо также указать, что при водородном обмене между насыщенными углеводородами и жидким бромистым и фтористым дейтерием, где окислительные процессы отсутствуют, окраска не наблюдается [194, 202]. [c.235]


    Радиационный цепной обмен отличается от термического еще тем, что он, по-видимому, идет и через ионно-молекулярные реакции. На это указывают следующие данные. Томпсон и Шефер [10], исследовавшие влияние благородных газов на реакцию изотопного обмена Нг и Вг, установили, что газы, имеющие потенциалы ионизации ниже, чем у Нг (15,43 эв) Кг (14,0 эв), Хе (12,13 эв), сильно подавляют цепную реакцию обмена Нг с Ог, в то время как Не, N6 и Аг, имеющие ионизационные по- [c.279]

    Изучение изотопного обмена позволяет судить и о характере связи. Так, используя радиоактивную серу выявили наличие обмена в связях С = 5 в органических соединениях и отсутствие обмена в связях Р = 5, что было объяснено меньшей поляризуемостью во втором типе связи. Следует оговориться, что употребляя термин прочность связи , нужно ясно представлять себе, какой характер реакции замеш,ения имеется в виду, т. е. происходит ли эта реакция по ионно-молекулярному (гетеролитическому) или атомному (гемолитическому) механизму. Один и тот же заместитель в углеродной цепочке и длина цепи оказывают в таких случаях противоположное влияние на прочность связи . Так, радиоактивный изотоп иода помог изучить обмен в галоидзамещенных насыщенных углеводородах различного строения. Ионный механизм обмена изучался в системах К1 + К1 и водно-спиртовом растворе (90% этилового спирта +10% воды) механизм атомного обмена — в системах Р1 + Ь в циклогексановом растворе, причем атомы иода получались фотохимически, путем диссоциации молекул Ь. Опыты показали, что усложнение скелета алифатического углеводорода или переход от нормального строения к изомерному приводят к резкому уменьшению скорости ионных реакций и к увеличению скорости атомных. Так, если обмен иода в СНд идет целиком по ионному механизму, если, далее в п-иодистом пропиле СНз — СН, — [c.242]

    Предложено несколько механизмов реакции окисления этилена на серебряных катализаторах . На основании данных по изотопному обмену предложен ионный механизм, согласно которому на поверхности серебряного катализатора образуются как молекулярный, так и атомарный ионы кислорода, являющиеся переносчиками кислорода  [c.271]

    Найдено, что в таких реакциях обмена могут принимать участие только алкильные атомы водорода. Гидроксильные атомы водорода спиртов и карбоновых кислот не обмениваются. Не подвержены обмену также атомы водорода ароматического ядра и в а-положении к нему. Показано, что реакция как в слу чае углеводородов, так и в случае распада перекиси ацетила протекает по молекулярному, а не по радикальному или ионному механизму. Квантовый выход порядка единицы (при учете всех возможных путей реакции). Вероятность обмена данного атома водорода частично зависит от его радикальной реакционной способности. Изотопный эффект мал. Варьирование сенсибилизаторов и длины волны света позволяет оценить энергию активации бимолекулярной реакции для тех случаев, когда термическая реакция идет цепным путем (для водородного обмена в углеводородах 70 ккал/моль). [c.243]


    По существу окисление углеводородов на платине резко отличается от окисления на серебре. В продуктах реакцйи на платине при широком варьировании условий процесса (температура, концентрация компонентов, давление) всегда присутствуют только углекислый газ и вода. Подробное исследование Бутягина [271] показало, что пропилен при адсорбции прочно связывается с платиной и удаляется только после окисления поверхности кислородом. После предварительной обработки поверхности платины кислородом количество поглощенного пропилена увеличивается. Изучение адсорбции кислорода на платине показало, что в приповерхностных слоях кислород может растворяться в количестве, равном десяткам монослоев. По данным Нестеровой и Фрумкина [109], на платинированной платине при длительном соприкосновении кислорода с платиной увеличивается прочность связи его с металлом и затрудняется восстановление. Исследование работы выхода при адсорбции кислорода на платине показало, что кислород на поверхности платины заряжен отрицательно. Данные по изотопному кислородному обмену указывают на возможность существования на поверхности платины молекулярного иона кислорода О2Г [c.141]

    Трепнел допускал возможность хемосорбции на серебре молекулярных ионов О2, считая, что концентрация последних и скорость их образования зависят от температуры и степени заполнения поверхности серебра Принимается, что уже при 290 °С кислород может на поверхности серебра заметно диссоциировать на атомы, т. е. в этих условиях одновременно могут существовать молекулярный и атомарный кис/юрод. Это предположение основано на большой подвижности кислорода на серебре, которая обнаруживается методом изотопного обмена Большая подвижность кислорода указывает ка малую прочность его связи с кристаллической решеткой серебра. В кристаллических структурах обычных окисных катализаторов подвижность кислорода мала,, а изотопный обмен кислорода начинается при температурах на 100—200 °С выше температуры начала каталитической реакции , тогда как на серебре изотопный обмен заметен как раз в диапазоне температур, в котором происходит окисление этилена. [c.273]

    Встречаются реакции, способные каталитически протекать как по редоксному, так и по кислотно-основному механизму. Примерами может служить изотопный обмен водорода между Ог и Нг, а также между молекулярным водородом и органическими молекулами. Вероятно, это справедливо и для полимеризации, которая для одного и того же мономера на одних катализаторах может протекать по радикальному, а на других — по ионному механизму. Из них первый в известной мере аналогичен окислительно-восстановительному процессу, а второй — кислотно-основному. [c.30]

    ИЗОТОПОВ РАЗДЕЛЕНИЕ — разделение смеси изотопных веществ на компоненты, содержащие отдельные изотопы. Чаще всего И. р. сводится к выделению из смеси одного из изотопных веществ или просто к концентрированию этого вещества в смеси. И. р. является частным случаем разделения веществ, близких по свойствам (напр., изомерных соединений, полимеров разного молекулярного веса и т. д.). Ввиду близости свойств изотопных веществ их разделение весьма трудоемко. Для разделения используют различия физич. или химич. свойств веществ, обусловленные различием в их изотопном составе (см. Изотопные эффекты). В соответствии с используемым изотопным эффектом существуют следующие методы И. р. диффузия (различие коэфф. диффузии), термодиффузия (различие коэфф. термодиффузии), ректификация (различие давлений пара), химич. обмен (неравномерное распределение изотопов при изотопич. обменном равновесии), кинетич. метод (различие констант скорости химич. реакций), центрифугирование (различие плотностей) и электромагнитный метод (различие удельных зарядов ионов). [c.98]


Смотреть страницы где упоминается термин Ионно-молекулярные реакции изотопного обмена: [c.114]    [c.76]    [c.349]    [c.349]   
Смотреть главы в:

Химическое равновесие и скорость реакций при высоких давлениях Издание 3 -> Ионно-молекулярные реакции изотопного обмена




ПОИСК





Смотрите так же термины и статьи:

Изотопные реакции

Изотопный обмен

Ионно-молекулярные реакци

Ионный обмен

Ионный обмен и иониты

Молекулярность реакции

Обмен изотопный Изотопного обмена

Обмен изотопный Изотопного обмена реакции

Обмен ионов

Реакции изотопного обмена

Реакции изотопного обмена Изотопного обмена реакции

Реакции ионного обмена

Реакции обмена

Реакции обменные



© 2025 chem21.info Реклама на сайте