Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикально-цепная полимеризация радиационная

    Можно считать установленным радикально-цепной механизм радиационной сополимеризации полиэфиров при температуре выше 0° С. Структурирование полиэфиров без мономеров, вероятно, может происходить частично за счет образования —С—С-связей по типу радиационной сшивки полиолефинов. Для выяснения механизма полимеризации (сополимеризации) при низких температурах требуются, по-видимому, дополнительные исследования. [c.178]


    Инициирование радикально-цепной полимеризации заключается в образовании первичного активного свободного радикала из молекулы мономера. Свободные радикалы могут образоваться под влиянием тепла (термическая полимеризация), света (фотохимическая полимеризация), в результате облучения мономера частицами высокой энергии (радиационная полимеризация), под влиянием инициаторов (полимеризация в присутствии инициаторов).  [c.76]

    Пока еще нет однозначных способов анализа процесса радиационного инициирования, с помощью которых можно было бы определить, в каких случаях полимеризация проходит по ионному, а в каких по радикально-цепному механизму. Однако существуют косвенные признаки, по которым можно судить, что протекает именно ионный процесс. Так, известно, что энергия активации роста макромолекулы при радикально-цепной полимеризации велика и трудно осуществить этот процесс при температуре — 60° С и ниже. Известно также, что ненасыщенные соединения с электронодонорными заместителями у двойной связи не полимеризуются по радикально-цепному механизму, в то же время их карбкатионы достаточно устойчивы, и при низкой температуре вероятность захвата электрона первичным ионом становится соизмеримой с вероятностью его столкновения с молекулой мономера. При температуре плавления мономера путь пробега карбкатиона до столкновения с молекулой мономера особенно мал и время, затрачиваемое на этот пробег, соизмеримо с продолжительностью жизни [c.126]

    Перед проведением полимеризации в среде мономера предварительно растворяют в нем инициатор радикально-цепной полимеризации или катализатор ионного процесса либо подвергают мономер световому или радиационному облучению. При этом мономер может находиться в газовой фазе (газофазная полимеризация), в жидкой (жидкофазная полимеризация) или в твердой (твердофазная полимеризация). [c.144]

    Действие радиации, или излучения, в основном сводится к образованию свободных радикалов, которые инициируют процесс цепной полимеризации. Поэтому вторая основная стадия реакции аналогична той, которую мы имеем при радикальной полимеризации в присутствии перекисей или кислорода. В последние годы удалось наблюдать ионную радиационную полимеризацию мономеров в твердой фазе. [c.71]

    Активным центром в реакциях цепной полимеризации может быть свободный радикал или ион. В зависимости от этого разли- чают радикальную и ионную полимеризацию. Существует много способов превращения мономера в первичный радикал. Это может происходить под влиянием тепловой энергии, света, ионизирующего излучения (а-, Р- и у-лучи), а также при введении в систему свободных радикалов или веществ, легко распадающихся на свободные радикалы (инициаторов). В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную полимеризацию и полимеризацию под влиянием химических инициаторов, в качестве которых применяют перекись бензоила, перекись водорода и др. [c.41]


    Процесс цепной полимеризации состоит из трех стадий возбуждения (инициирования) или активации молекул роста цепи и обрыва цепи. Обычно различают два вида цепной полимеризации радикальная (инициированная) и ионная (каталитическая). Инициированные реакции полимеризации заключаются в образовании свободного активного радикала при действии тепла (термическая полимеризация), света (фотополимеризация) или облучения а-, р-и у-частицами (радиационная полимеризация). Наиболее распространенной является полимеризация в присутствии инициатора. В этом случае активация мономера начинается с распада инициатора (I) и образования свободных радикалов (К ), которые взаимодействуют с мономером (А) по схеме  [c.374]

    Исследованиями, проведенными как у нас [1], так и за границей [2], было показано, что процессы радиационной полимеризации протекают по свободно-радикальному цепному механизму. Развитие, обрыв и передача цепей определяются одними и теми же закономерностями радикальной полимеризации, пе зависящими от способа инициирования фотоинициирование, радиационное инициирование (7-излучение, а- и р-части-цы), инициирование перекисями, диазосоединениями, редокси-система-ми и т. п. [c.86]

    Реакция полимеризации протекает по радикально-цепному механизму, инициируется перекисями, в том числе персульфатами, или радиационным излучением. В последнем случае удается получить полимер особенно высокого молекулярного веса. Блочная полимеризация в присутствии инициаторов часто сопровождается передачей кинетической цепи на мономер. Эту реакцию удается подавать понижением температуры полимеризации, т. е. применением инициаторов с низкой температурой распада или активированием этого процесса промоторами. Блочную полимеризацию трифторхлорэтилена рекомендуется проводить при 20° С в присут- [c.315]

    Еще в самом начале развития радиационной химии Дейнтон [19] показал, что полимеризация акрилонитрила в водном растворе осуществляется за счет радикалов, образующихся при радиолизе воды. Последнее время многими исследователями показано, что радиационная полимеризация может протекать и по ионному механизму, особенно в твердой фазе при низкой температуре, где радикальные процессы заторможены из-за малой подвижности радикалов. По любому из механизмов полимеризация протекает цепным путем. Это относится, конечно, и к радиационной иолимеризации, хотя длина цепи может быть весьма различной. Под действием радиации, как известно, легко протекает также эмульсионная полимеризация. [c.59]

    Радикальная полимеризация всегда протекает по цепному механизму и состоит из следующих реакций инициирования (образования свободных радикалов), роста цепи и обрыва цепи. В зависимости от способа образования свободных радикалов различают термическую, фотохимическую, радиационную и инициированную полимеризацию. [c.16]

    В случае винилбутилового эфира фотохимическая и радиационно-химическая полимеризация как в отсутствие, так и в присутствии ССЬ в заметной степени не протекает. Однако в среде четыреххлористого углерода при облучении светом или -квантами возникает эффективная цепная радикальная реакция присоединения ССЬ к винилбутиловому эфиру. [c.87]

    Начиная с 1951 г., публикуется серия работ по изучению кинетики и основных закономерностей радиационной полимеризации и сополимеризации ненасыщенных полиэфиров. В работе Шмитса и Лоутона [414] показано, что тетра-этиленгликольдиметакрилат полимеризуется при облучении электронами высокой энергии по радикально-цепному механизму. Обэтом свидетельствовали ингибирование реакции бензохиноном и кислородом воздуха, а также отверждение при низких дозах от 2,5 до 10 Мрад. Авторы обнаружили, что реакция с достаточной глубиной превращения может проходить при температурах не ниже —50° С. [c.139]

    В работе В. И. Гольданского и сотрудников [51] описано кинетическое исследование радиационной полимеризации полиэфиракрилатов при комнатной температуре и проведено сравнение радиационного и термического процессов полимеризации. Для йзучения кинетики использована методика измерения тепловых эффектов в ходе облучения [15]. В результате этих исследований было показано, что начальная скорость полимеризации пропорциональна корню квадратному из мощности дозы и что кислород является активным ингибитором полимеризации. Наличие остаточного пост-эффекта, наряду с упомянутыми закономерностями, свидетельствует о радикально-цепном механизме превращения и в случае полиэфиракрилатов. Эти закономерности являются общими как для радиационной, так и для термической полимеризации. [c.143]

    Радиационный выход процесса полимеризации глицидилметакрилата (до 10% превращения) в вакууме при 20° С и мощности дозы 50 рад1сек составляет 26 200 молЛОО эв. Выход линейно растет с повышением температуры и достигает 40 500 мол./100 эв при 40° С. Порядок величины радиационного выхода и его зависимость от температуры и присутствия кислорода воздуха указывают на то, что вызванная действием излучений полимеризация глицидилметакрилата протекает по радикальному цепному механизму. [c.203]


    При облучении мономеров а-, -, v-лучами, рентгеновскими лучами, ускоренными электронами и другими частицами высокой энергии (радиационная полимеризация) также происходит образование свободных радикалов, которые инициируют реакцию далимеризации. Процесс цепной полимеризации, инициируемый излучением, протекает преимущественно по радикальному и лишь в редких случаях по ионному механизму. [c.108]

    П.-особый тип цепных реакции в ней развитие кинетич. цепи сопровождается ростом материальной цепи макромолекулы. Процесс включает неск. осн. стадий, т. наз. элементарных актов инициирование-превращ. небольшой доли молекул мономера в активные центры под действием специально вводимых в-в (инициаторы радикальные и катализаторы полимеризации), излучения высоких энергий (радиационная полимеризация), света (фотополимеризация) или электрич. тока рост цепи-последоват. присоединение молекул мономера (М) к активному центру (М )  [c.637]

    Как известно, ионизирующие излучения являются эффективными средствами для инициирования цепных процессов, протекающих по радикальному механизму, в частности процессов радикальной полимеризации. Интерес к различным видам ра-дикйльной полимеризации особенно возрос в последнее время в связи с перспективами получения радиационными методами привитых и блок-полимеров. [c.219]

    На рис. 4 приведены кривые, характеризующие зависимость скорости полимеризации акрилонитрила на мелкопористом и беспористом стекловолокнах от мощности дозы. Приведенный график показывает, что исследованные образцы обнаруживают различную зависимость скорости нолимеризации от мощности дозы в случае непористого стекловолокна скорость пропорциональна корню квадратному из мощности дозы, как и для синтетических подложек [5], а в случае пористого образца скорость процесса линейно зависит от мощности дозы. Специально проведенные опыты По определению зависимости скорости привитой полимеризации от мощности дозы для различных минеральных бес-пористых подложек (например аэросил, белая сажа), близких по своей природе к кремнеземным стекловолокнам, а также для ряда окислов металлов показали, что во всех этих случаях хорошо соблюдается пропорциональность скорости процесса корню квадратному из мощности дозы. Как известно, такая зависимость характерна для цепных процессов с бимолекулярным обрывом кинетических цепей и обычно является признаком радикального механизма реакции. Однако в случае газофазной радиационной привитой полимеризации на минеральных подложках в принципе можно было бы представить себе процесс, протекающий по ионному механизму и также подчиняющийся этой же закономерности. В связи с этим были поставлены опыты, целью которых являлось получение прямых данных, касающихся механизма процесса. Для этого на ряд минеральных порошков-подложек было предварительно нанесено из раствора небольшое количество ингибитора радикальных процессов — дифенплпикрилгидразила. Количество нанесенного на поверхность ингибитора отвечало приблизительно покрытию 10% поверхности образцов. Было установлено, что во всех случаях дифенилпикрилгидразил полностью подавляе. процесс полимеризации, что однозначно свидетельствует о радикальном механизме исследуемых реакций. [c.163]


Смотреть страницы где упоминается термин Радикально-цепная полимеризация радиационная: [c.99]    [c.292]    [c.117]   
Химия синтетических полимеров Издание 3 (1971) -- [ c.76 , c.79 , c.81 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация радикальная цепная

Полимеризация радикально-цепная

Радиационная полимеризация

Радикальная полимеризация

Цепная полимеризация



© 2025 chem21.info Реклама на сайте