Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Автоматическая система ввода фирмы

Рис. 19. Автоматическая система ввода тверды.х образцов фирмы Рис. 19. Автоматическая система ввода тверды.х образцов фирмы

    Гибкость вала и свободная подвеска ротора обеспечивают само-установку последнего. Температуру ротора контролируют с помощью инфракрасного датчика, установленного около ротора на уровне ячеек, с помощью термистора (или передатчика), помещенного внутри ротора, сопротивление (передающая частота) которого зависит от температуры. Камера термостатируется с точностью =tO,l °С. В последних моделях фреоновые рефрижераторы заменяются системой термоэлектрического охлаждения батареями Пельтье. Приводной двигатель в ультрацентрифугах фирмы MSB расположен в вакуумной камере, поэтому в них отсутствует специальный масляный подшипник для ввода в камеру вращающейся оси. Ультрацентрифуги снабжаются автоматической системой фоторегистрации процесса седиментации. [c.153]

    Основные элементы газохроматографической системы — источник сжатого газа и колонка с неподвижной фазой. Большинство хроматографических установок содержат элементы, схематически изображенные на рис. 1.9. К ним относятся источник сжатого газа с регулятором давления регулятор расхода для поддержания постоянной скорости потока подвижной фазы узел ввода пробы, обогреваемый независимо от термостата колонки детектор с автономной системой контроля температуры и диаграммный регистратор. Перед колонкой и после детектора, а- в некоторых случаях только после детектора, в линию включают расходомер. Часто в состав хроматографов вводят манометры, необходимые для измерения абсолютных (но не относительных) характеристик удерживания блок программирования температуры во времени автоматические устройства для ввода пробы (испарители), приспособленные для измерения характеристик удерживания ловушки для сбора фракций, а также устройства для обработки данных, например дисковые и цифровые интеграторы и компьютеры. Список фирм-изготовителей публикуется в ежегодно выпускаемом каталоге по аналитическому химическому оборудованию [24], в котором помещаются также данные по номенклатуре хроматографического оборудования. В издании 1970—1971 гг. соответствующий раздел занимает 2 /4 страницы, на которых перечислены названия фирм-поставщиков, перечень дополнительного оборудования и запасных частей. [c.46]

    В описанное устройство входит ЭВМ среднего размера PDP-10, работающая в режиме разделения времени по особой программе. Аналогичные ЭВМ использованы в исследовательских лабораториях фирмы IBM (Сан-Хосе, Калифорния, США). Эти системы осуществляют автоматический контроль и обработку данных для ряда связанных с ними приборов и могут также проводить пакетную обработку данных. Связь осуществлена по принципу так называемых переднего и заднего планов, т. е. первый класс перечисленных задач всегда имеет преимущество перед вторым. Несколько отличная автоматическая система примерно того же объема имеется в лабораториях по исследованию излучений (Ливермор, Калифорния, США). Эта система, в состав которой входит ЭВМ PDP-7, описана в прекрасном обзоре Фразера (1970). В работе Кука и сотр. (1965) описана система меньшего масштаба, в которой с ЭВМ SDS-910 соединены масс-спектрометр с термоионным источником и микрофотометр, но обработка данных производится не в момент их получения, а после предварительного накопления с последующим вводом в ЭВМ. [c.237]


    Автоматическая система фирмы Hamilton , сконструированная вместе с вводным каналом, создана недавно. Это устройство, однако, годится не для всех хроматографов. Соединение системы автоматического ввода с существующей моделью стоит дорого [c.263]

    Процессы парофазного концентрирования примесей на сорбенте, термической десорбции и ввода их в хроматограф могут быть автоматизированы. Фирмой Хьюлетт— Паккард выпущено специальное пробоотборное устройство (Purge and trap sampler 7675 ), предназначенное для газохроматографического контроля воды на содержание углеводородов и галогенпроизводных, автоматически осуществляющее операции стриппинга и сорбции на тенаксе, быстрого нагревания сорбента, дозирования пара и подготовки системы к следующему анализу [23]. Продолжительность отдельных стадий и [c.117]

    Во всех работах при газохроматографическом определении спирта используется статический вариант.В качестве сосуда для установления равновесия между фазами обычно применяются стеклянные флаконы или пробирки, закрытые эластичной резиновой пробкой. Дозирование в хроматограф равновесного пара в таких случаях производится с помощью газовых шприцев. Гольд-баум с соавторами [37] предложили совместить операции установления равновесия и дозирования пара в хроматограф, используя для этой цели медицинские шприцы, которыми кровь отбирается у человека. Все же лучшая воспроизводимость дозирования равновесного пара при определении спирта в крови достигается в специа-лизированных приборах, таких, как А1со-Апа1угег [38] с детектором по теплопроводности на термисторах и уни нереальные парофазные анализаторы Р40, Р42 и Р45 фирмы Перкин — Элмер . Пневматическая система автоматического ввода равновесного пара в хроматограф, описанная в гл. 2, была разработана именно для этих анализов [39] (на основе методики Махата [40,41]). [c.124]

    В [425, с. 21/364] (фирма Te natom, Испания) сообщается о разработке автоматической гибкой системы "Midas" для контроля сложных авиационных деталей, узлов энергетического оборудования (в том числе сварных). В систему вводят сведения о геометрии ОК, желательных параметрах контроля (частоте, угле ввода и др.), требуемой области контроля. После этого система предлагает схему автоматического контроля, которую можно корректировать. [c.380]

    В других системах образцы помещаются в тефлоновых капиллярах, навитых на форму в виде вертикальной спирали или расположенных в виде двухслойной горизонтальной спирали. В этих капиллярах пробы защищены от воздействия кислорода воздуха и бактерий. Автоматические анализаторы содержат несколько таких капилляров. Например, фирма Вескшап выпускает устройство для ввода проб (модель 121) 72 образцов все образцы помещены в общий холодильник и хранятся при 4 °С, [c.63]

    В простейшей хроматографической системе элюат проходит через детектор, соединенный через расходомер с коллектором фракций. В процессе измерения расхода небольшие пузырьки воздуха вводятся в поток жидкости, скорость которого необходимо измерить. Скорость пропорциональна времени прохождения пузырька между двумя метками наблюдения проводятся визуально или фотоэлектрически. Эти измерения можно проводить автоматически ошибка определения при этом составляет примерно 1%. Расходомер фирмы LKB используется для длительного измерения расхода жидкостей в диапазоне от 0,5 до 300 мл/ч. Вводом пузырьков воздуха в капилляр управляют электронные импульсы. Эти пузырьки перемещаются потоком жидкости, и их прохождение регистрируется в определенном месте фотодиодом. Последующая точка на капилляре соответствует 250 мкл жидкости, второй фотодиод регистрирует только прохождение пузырьков установленного размера, а все остальные пузырьки не учитывает. Третий фотодиод, регистрирующий пузырьки, удален от второго на такое же расстояние (250 мкл). Сигнал в интегратор подается только в тот момент, когда одновременно в двух контрольных точках появляются новые пузырьки, так как при этом гарантируется правильность измерения времени. Если к системе подключен коллектор фракций, фракционируемый объем пропорционален минимальному объему в 250 МКЛ. Этот принцип измерения объема используется также в автоматических инжекторах с постоянным объемом дозирования в них жидкость контактирует только со стеклом и тефлоном. В большинстве других приборов для измерения расхода жидкости чаще применяются сифоны постоянного объема. Когда сифон опустошается, жидкость перекрывает фоточувствительную ячейку и на хроматограмме отмечается начало новой фракции. Счетчики капель не пригодны для измерения расхода жидкости, если объем ее превышает 5 мл кроме того, при дх использовании возникают проблемы, связанные с изменением поверхностного натяжения или плотности жидкости. [c.78]

    Рассмотрим возможность автоматизации хроматографического анализа ферментов на примере, заимствованном из статьи [42]. Авторы статьи провели хроматографическое разделение ферментов на автоматическом анализаторе фирмы Te hni on (рис. 8.22). В этом приборе используется пропорциональный насос Р с 12 пластмассовыми трубками различного диаметра. Буферный раствор из системы формирования градиента прокачивается в колонку через трубку 1. Разделение белков происходит в колонке К. Основная часть элюата из колонки поступает в коллектор фракций F и затем используется после окончания анализа. В процессе хроматографирования от основного потока элюата отделяется очень небольшая часть, которая поступает в три аналитические секции, где проводится определение основной фосфатазы, трансаминазы и всех белков. После определения основной фосфатазы часть элюата поступает через трубку 2 вместе с пузырьками воздуха, введенными через трубку 3, и субстратом из трубки 4 в аналитическую систему. В короткой стеклянной спирали М происходит тшательное смешивание водных растворов, полученная смесь проводится через термостат I, в котором при определенных условиях происходит расщепление субстрата. Чтобы реакция прервалась, к смеси через трубку 5 добавляется раствор соответствующего реагента. Через смесительную спираль результирующая смесь вводится в проточную кювету колориметра С и затем идет на оброс. Сигнал детектора записывается самописцем Z, фиксирующим концентрацию основной фосфатазы (I). На абсциссу наносятся номера фракций. Определение трансаминазы проводится аналогичным образом. Через трубки 6—9 подаются образец, воздух, субстрат и реагент соответственно. Окончательный продукт реакции проходит через колориметр Сг. Результирующая концентрация трансаминазы пропорциональна кривой III записываемой самописцем. Третья аналитическая система, регистрирующая суммарное содержание белков, несколько проще, чем две другие. Часть элюата поступает через трубку 10, воздух проводится через трубку 11, а реагент для обнаружения белков — через трубку 12. Растворы смешиваются в спирали М, полученная смесь поступает в проточную ячейку колориметра Сз. Содержание белков в смеси записьгеается в виде кривой II. [c.80]


    Ультрафиолетовый спектрофотометр 5Р 3000 фирмы "Uni am" снабжен автоматическим устройством для смены проб емкостью до 50 стеклянных пробирок с пробами. Содержимое каждой пробирки последовательно переносится в измерительную кювету спектрофотометра. Выпускается два механических устройства для смены анализи-ууомых растворов. Выбор устройства зависит от природы анализа и объема растворов. В автоматической кювете типа 5Р 3002 Аи используется внешний всасывающий насос, который заполняет измерительную кювету анализируемыми растворами и удаляет их после каждого измерения. Для водных растворов ограниченного объема рекомендуется система 5Р 3002Р с интегральным измерительным насосом, который подает раствор в кювету и после измерения возвращает его в соответствующую пробирку. При длине светового пучка 10 мм объем раствора, необходимый для измерения поглощения, составляет 0,6 мл. Утверждается, что для системы 5Р 3002 Аи загрязнение анализируемого раствора предыдущим раствором эквивалентно 0,2/о-ной разности поглощений этих растворов. Полный цикл времени обработки пробы оставляет приблизительно 40 с. Спектрофотометр 5Р 3000 является однолучевым устройством, в котором кювета, содержащая стандартный раствор, и кювета с анализируемым раствором последовательно вводятся в световой пучок. Оптическую балансировку осуществляют с помощью вспомогательной вольфрамовой лампы. Интенсивность излучения, пропускаемого кюветой со стандартным раствором, ослабляется до тех пор, пока не становится равной интенсивности модулированного вспомогательного стандартного источника пропускание кю деты с пробой определяется как функция интенсивности вспомогательного источника, которая затем преобразуется в коэффициент поглощения или в коэффициент пропускания. Использование вспомогательного источника позволяет устранить погрешности, вызываемые дрейфом характеристик фотоумножителя. В однолучевом приборе эти погрешности могут стать значительными, если анализируется большое число образцов. [c.102]

    Пикфорд и Росси [21] описывают автоматический атомно-абсорбционный спектрофотометрический метод определения ряда металлов, содержащихся в воде высокой чистоты в количествах порядка мкг/л. В данном случае выбрано непламенное возбуждение с использованием нагретой графитовой трубки типа трубки Массмана. Измерения проводятся с помощью атомно-абсорбционного спектрофотометра фирмы "Be kman , модель 1301/DBG. Разработанный авторами автоматический пробоотборник периодически вводит в графитовую трубку пробы объемом 100 мкл, взятые из обводного трубопровода с проточной водой. Принцип действия пробоотборника иллюстрируется рис. 4.10. Частота срабатывания системы задается вращением двух эксцентрических кулачков, приводимых в движение синхронным двигателем на [c.189]

    Автоматизация контрольных операций достигается не только за счет автоматизированного ввода проб, но и за счет использования микропроцессоров, современной электронной контрольно-измерительной и управляющей аппаратуры, лазерной сканирующей системы, электронных приборов управления и микропроцессора, который управляет последовательностью испытаний и осуществляет обработку результатов анализа. В виброреометрах указанной фирмы, а также в отечественных виброреометрах РВС и РВМ предусмотрена возможность подключения к программным электронно-измерительным устройствам для автоматической обработки, анализа и представления результатов испытаний в цифровом виде, сравнения ПКП с предварительно заданными нормами контроля и выдачи заключения об их соответствии или несоответствии нормам. В качестве такого устройства может использоваться мини-ЭВМ СМ-2М. [c.102]

    Довольно давно стали применять различные системы для автоматического ввода анализируемых растворов в пламя. Liiiepb >ie такая система была разработана и применена автором [66] в автоматическом эмиссионном спектрофотометре для пламени. В настоящее время весьма близкие по конструкции и принципам действия системы автоматического ввода (САВ) придают в комплект некоторых приборов, например, спектрофотометра фирмы Perkin — Elmer модели 5000, ЭТА той же фирмы модели HGA-74 и более поздних моделей и многих других приборов (не обязательно атомно-абсорбционных), предназначенных для анализа растворов. [c.143]

Рис. 5—3. Хроматограмма лигроиновой фракции нефти после прохождения через предколонку. Прибор газовый хроматограф НР 5880А, пневматическая система переключения колонок фирмы SGE. Предколонка 12м х О, 2 мм, df НФ (50% фенилметилсиликон) 0,33 мкм. Газ-носитель Не (30 см/с). Температура узла ввода пробы 250°С, ПИД — 325 С. Объем пробы 0,2 мкл, коэффициент деления потока 200 1 (автоматический делитель потока с автосэмплером НР73А). Температура термостата 35 С (5 мин), затем программирование со скоростью подъема температуры 5 град/мин до 130 С (10 мин). Рис. 5—3. Хроматограмма <a href="/info/1020963">лигроиновой фракции нефти</a> после <a href="/info/566722">прохождения через</a> предколонку. <a href="/info/128695">Прибор газовый хроматограф</a> НР 5880А, пневматическая <a href="/info/1738711">система переключения колонок</a> фирмы SGE. Предколонка 12м х О, 2 мм, df НФ (50% фенилметилсиликон) 0,33 мкм. Газ-носитель Не (30 см/с). Температура узла <a href="/info/39420">ввода пробы</a> 250°С, ПИД — 325 С. <a href="/info/426654">Объем пробы</a> 0,2 мкл, <a href="/info/91544">коэффициент деления</a> потока 200 1 (автоматический <a href="/info/39602">делитель потока</a> с автосэмплером НР73А). <a href="/info/1020959">Температура термостата</a> 35 С (5 мин), затем программирование со скоростью подъема температуры 5 град/мин до 130 С (10 мин).
    В некоторых случаях при углубленном исследовании отдельного соединения не вся биологическая информация запоминается. Это наблюдается, в частности, в ситуациях, когда имеется семейство родственных соединений, испытанных с помощью одной и той же стандартной методики. В систему вводятся структурные формулы всех новых соедипений, которые синтезировались в фирме с целью биологического испытания. Кроме того, в систему вводится структурная информация из литературных источников, представляющая интерес для фирмы. При этом рассматриваются только однозначно определенные соединения (структуры Маркуша не вводятся). В BF применяется поатомная система кодирования тппа описанной Горовитцем и Крайнем [34], Вальдо [33] и др. Скорость кодирования в среднем 40 соединений в час. Специальная программа выявляет ошибки кодирования. Для автоматического вывода структурных формул па печать используется высокоскоростное печатающее устройство IBM1403A N1, в котором применены некоторые дополнительные специальные химические символы. [c.188]


Смотреть страницы где упоминается термин Автоматическая система ввода фирмы: [c.263]    [c.136]    [c.197]    [c.133]    [c.80]    [c.80]    [c.416]    [c.254]    [c.255]    [c.326]    [c.333]    [c.377]    [c.102]    [c.157]    [c.133]   
Смотреть главы в:

Автоматический химический анализ -> Автоматическая система ввода фирмы




ПОИСК





Смотрите так же термины и статьи:

Фирма РКК, ооо



© 2024 chem21.info Реклама на сайте