Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы доменного процесса

    Очень широки возможности использования водорода в металлургии для прямого восстановления железных руд, а также для интенсификации доменного процесса и снижения расхода кокса в доменных печах. Высказываются предположения, что к концу текущего столетия по потреблению водорода металлургия может сравниться с синтезом аммиака и даже превзойти его. Крупным потребителем водорода может стать микробиологическая промышленность (синтез кормовых белков на основе штаммов бактерий, ассимилирующих водород). [c.49]


    До конца 20-х годов в химической термодинамике наибольшее внимание исследователи уделяли изучению фазовых переходов и свойств растворов, а в отношении же химических реакций ограничивались преимущественно определениями их тепловых эффектов. В известной степени это объясняется тем, что именно указанные направления химической термодинамики стали первыми удовлетворять потребности производства. Практическое же использование методов термодинамики химических реакций для решения крупных промышленных проблем долгое время отставало от ее возможностей. Правда, еще в 70—80-х годах методы химической термодинамики были успешно применены для исследования доменного процесса. К 1914 году на основе термодинамического исследования Габер определил условия, необходимые для осуществления синтеза аммиака из азота и водорода, что привело в конечном результате к возможности промышленного получения в больших количествах аммиака, азотной кислоты, азотных удобрений, взрывчатых веществ и порохов из дешевых и широко доступных исходных материалов. В 20-х годах, лишь после того, как термодинамическое исследование реакции синтеза метанола из Н2 и СО дало возможность определить условия, при которых положение равновесия благоприятно для этого, синтеза, наконец была решена проблема создания производства метанола из дешевого сырья. Полученные результаты показали также, что проводившиеся ранее поиски более активных катализаторов не были успешными не из-за их малой активности, а вследствие недостаточно благоприятного положения равновесия в условиях, в которых пытались осуществить эту реакцию. Известны и другие примеры успешного применения методов термодинамики химических реакций для решения промышленных задач. Однако только с конца 20-х годов плодотворность применения этих методов исследования начинает получать все более широкое признание. [c.19]

    Реакции, лежащие в основе доменных процессов получения чугуна. [c.545]

    Такие важнейшие производственные процессы в области химической технологии, как синтез и окисление аммиака, контактное получение серной кислоты, производство этанола из природного газа, крекинг нефти, получение чугуна в доменных печах, производство алюминия и многие другие всецело основаны на результатах физико-химического исследования реакций, лежащих в основе этих процессов. [c.6]


    Реакция образования фосгена протекает при наличии катализатора (активированного угля) и при комнатной температуре. Способность оксида углерода восстанавливать многие оксиды металлов широко используется в пирометаллургии. Эти реакции лежат в основе промышленного производства таких металлов, как Ре, Со, N1, Си, Ag, Мп, Мо н др. Условия восстановления определяются природой оксида металла. Температуры восстановления металлических оксидов варьируют от 300 до 1500 °С. В доменном процессе суммарная реакция представлена уравнением [c.186]

    Теоретические основы доменного процесса [c.60]

    Элементы доменной печи и основы доменного процесса [c.160]

    С. Т. Ростовцев. Физико-химические основы производства чугуна.— Труды совещания. Физико-химические основы доменного процесса и современная практика производства чугуна . М., ГОСИНТИ, 1956, стр. 65. [c.107]

    Железо. Его свойства. Окислы железа. Основные руды железа. Понятие о доменном процессе. Чугун. Стали. Их значение в народном хозяйстве СССР. Химические реакции, лежащие в основе получения чугуна и стали. [c.279]

    ОСНОВЫ ДОМЕННОГО ПРОЦЕССА [c.16]

    Современный период характеризуется созданием на основе ароматических углеводородов производства таких многотоннажных продуктов, как пластические массы, каучуки и синтетические волокна, что потребовало резкого расширения сырьевой базы. Коксохимическая промышленность, масштабы которой определяются потребностью в металлургическом коксе, не смогла удовлетворить растущий спрос на бензольные углеводороды, Расход кокса благодаря совершенствованию доменного процесса снизился за последние десятилетия с 800—900 до 500—560 кг на 1т чугуна в среднем по металлургической промышленности. Возможно и дальнейшее сокращение расхода кокса, хотя в 1980—1985 гг. он вряд ли будет меньше 350—400 кг/т чугуна [1, 2]. В результате снижения расхода кокса при сравнительно небольших темпах роста производства черных металлов (5,2—5,3% в год) объемы производства кокса и побочных продуктов коксования за последние годы в большинстве стран стабилизировались (темпы роста не более 2,4% в год) [3]. [c.145]

    Недостаток этого способа — неполнота восстановления и загрязнение полученного металла углеродом. Именно эти причины лежат в основе последующего передела чугуна, получаемого при доменном процессе, в сталь и железо. [c.118]

    К бетону в металлургии. Каменноугольный кокс применяется в доменном процессе для выплавки чугуна, в литейном производстве, цветной металлургии, в химической промышленности электродный пековый и нефтяной кокс — для производства электродов. Активный уголь незаменим в адсорбционной технике, для разделения газовых смесей, как основа для каталитических и хемосорбционных добавок. [c.294]

    Теоретические основы доменного процесса. Шихтовые материалы, посгупившие в печи, перемещаются вниз, проходят через зоны разной степени нагрева и под действием кдуших навстречу горячих газов, испытывают сложный комплекс физико-химических превращений. В этих материалах последовательно происходит испарение гигроскопической и кристаллизационной воды, разложение карбонатов, восстановление железа и других металлов из их окислов, науглероживание железа, плавление металла, образование и плавление шлаков, горение топлива и т. д. [c.177]

    Исключительное по важности значение в металлохимии самого железа имеют взаимодействия в системе железо — углерод, поскольку сплавы железа с углеродом составляют основу черной металлургии. При карботермическом восстановлении железа из оксидных руд (доменный процесс) образуется не чистое железо, а чугун. Особенности взаимодействия в системе Fe—С наглядно отражаются диаграммой состояния (рис. 61). Геометрический строй диаграммы со стороны железа определяется тремя полиморфными модификациями a-Fe, 7-Fe и б-Fe, поскольку переход aT не связан с наличием тепловых эффектов и не отражается на диаграмме. Углерод в железе образует твердые растворы внедрения, области которых на диаграмме обозначены как а, 7, б. Самая большая растворимость углерода — в y-Fe. Этот твердый раствор называется аустенитом. Области твердых растворов углерода в а- и б-Fe, называемые -и б-фер-ритами, значительно меньше. [c.413]

    Современные доменные печи — это огромные агрегаты с подогревом и обогащением воздуха, работающие по автоматическому циклу. Основой регулирования доменного процесса являются два [c.362]

    Современные доменные печи — это огромные агрегаты с подогревом и обогащением воздуха, работающие по автоматическому циклу. Основой регулирования доменного процесса являются два параметра температура и парциальное давление СО в атмосфере доменной печи. В самом деле, восстановление руды разбивается на несколько стадий по высоте шахты доменной печи (устройство которой известно из курса средней школы)  [c.377]


    Доменный процесс возгонки фосфора привлек большое внимание не только нашей промышленности, но и в других странах. Он был реализован в Северо-Американских Соединенных Штатах (США) на основе работ Химико-технологической лаборатории Департамента земледелия, хотя и не получил распространения. Как видно из иностранных публикаций, работы Э. В. Брицке привлекли к себе большое внимание и за рубежом. [c.10]

    В начале техника довольствовалась общими химическими уравнениями и термодинамическими законами применительно к реакциям горения. Наряду с процессами сжигания топлив были разработаны методы получения искусственных горючих газов, истоки которых следует искать в развитии доменного процесса, представляющего собой в известной мере разновидность газогенераторного процесса. Вопросы сжигания и газификации топлив становятся предметом глубоких исследований русских и зарубежных ученых. Капитальным трудом, в котором даются основы науки о топливе, является монография Д. И. Менделеева Основы фабрично-заводской промышленности [4]. В разделе Топливо дана характеристика близкой и далекой перспектив развития научных и технических знаний в области топливной промышленности и использования топлива. [c.8]

    Состав и основы получения коксового газа. Коксование как процесс термохимической переработки углей возникло в связи с развитием металлургической промышленности, в частности доменного процесса. Прежде доменную плавку вели на древесном угле. При наличии в тот период небольших доменных печен древесный уголь по своим механиче ским свойствам был вполне пригоден для плавки. Но с ростом потребления металла росла и потребность в древесном угле, приводившая к быстрому истреблению лесных массивов. Таким образом, в результате все больше и больше сказывался недостаток в древесном угле. С другой стороны, увеличение размеров доменных печей и повышение требований к прочности металлургического топлива также вызывали необходимость замены древесного угля другим видом беспламенного топлива. Таким топливом и явился кокс — твердый остаток перегонки угля при высоких температурах. [c.217]

    Выделение металлов из их соединений путем электролиза лежит в основе электрометаллургических процессов. Металлы, восстанавливающиеся сравнительно легко, выделяются обычно не путем электролиза, а с помощью наиболее дешевого в наше время массового восстановителя — угля, применяемого в виде кокса (вспомним, например, доменный процесс). Для металлов, наиболее трудно восстанавливаемых, уголь уже непригоден, и в этом случае прибегают к к а-тодному восстановлению, т. е. выделению путем электролиза. Такие металлы могут окисляться водой, и поэтому их соединения подвергаются электролизу не в водных растворах, а в расплавленном состоянии или в растворах в других растворителях. Так, металлический магний получается электролизом расплавленного Mg b, металлический натрий — электролизом расплавленного едкого натра, металлический алюминий — электролизом раствора окиси алюминия в расплавленном криолите 3NaF AIF3 Все эти процессы проводятся при высокой температуре, для алюминия, например, при 1000 С. Они являются весьма энергоемкими, так как металлы эти обладают малым атомным весом, алюминий к тому же трехвалентен (1 г-экв алюминия равен всего 7 г) и, следовательно, требуется большой (около 4-10 а-ч) расход тока на тонну выплавляемого металла. [c.447]

    При изучении доменного процесса и его химизма на основе знаний об окислительно-восстановительных реакциях можно применить кинофрагмент Получение чугуна в сочетании с красочной схемой Доменная печь . Это позволяет ознакомить учащихся со схемой доменного процесса, химизмом плавки, устройством и принципом действия колошников, воздухонагревателя и т. д. Кинофильмы Доменный процесс , Металлургия чугуна и стали , кинофрагменты Воздухонагреватель , Загрузка доменной печи , Устройство и работа доменной печи , киноколь-цовка Теплообмен в доменной печи могут найти применение на этапе закрепления знаний о производстве чугуна. Для ознакомления с производством стали целесообразно применить диафильмы Получение металлов из руд , диасерию Производство стали и чугуна , кинофрагменты и кинофильмы Применение кислорода в производстве стали , Устройство и работа мартеновской печи и др. [c.60]

    Применение. Кислород щироко применяют в промышленности для интенсификации многих процессов, в основе которых лежит кислородное окисление. В нашей стране более 60% производимого кислорода расходуется в черной и цветной металлургии для ускоре- ния доменного процесса, для переработки чугуна в сталь, для обогащения воздушного дутья при выплавке свинца. При добавлении кислорода к воздуху до 35% расход кокса при выплавке сплавов на основе железа (ферромарганца, ферросилиция и др.) снижается почти в два раза, а производительность печи становится вдвое больше. КиЬлород необходим для производства многих важных соединений (Н2504, НЫОз и т. д.),. в медицине, для газификации углей и мазута. [c.233]

    Природный СаСОз выполняет функции не только строительного материала, но и служит сырьем в производстве СаО, карбида кальция, цемента его применяют в доменном процессе в качестве флюса, понижающего температуру плавления железной руды. MgS03 — основа для производства различных огнеупорных материалов. [c.280]

    Применение кислорода. Кислород применяется в металлургической и химическом промышленности доменный процесс, производство азотной и серной кислот. Кроме того, он используется для подземной газификации углей, газовой сварки и резки металлов. Замена воздуха кислородом в ряде производств ведет к интенсификации и сокращает производственный цикл. Смееп жидкого кислорода с горючими материалами (угольный порошок, опилки, масла и др.) составляют основу мощных взрывчатых веществ — окси-ликвитов, применяющихся прн взрывных работах. Кроме того, жидкий кислород — окислитель для ракетных топлив и хладагент. Наконец, кислород используется для жизнеобеспечения на подводных лодках и космических кораблях, а также в медицине. [c.315]

    Больше 90% мировой добычи марганцовых руд потребляется металлургической промышленностью 2. Они идут на изготовление ферромарганца (60—90% Мп), зеркального чугуна, силико-мар-ганца, фосфо-марганца и др. В доменном процессе. марганцем обессеривают чугун. Марганец служит легирующей добавкой при получении чугуна повышенной прочности и, особенно, твердых сталей, из которых большое значение приобрели молибденово-марганцовые. Марганец используют и в производстве сплавов на основе цветных металлов — меди (например, манганин), алюминия-(дуралюмин) и др. Металлургическая промышленность использует богатые марганцем руды с минимальным содержанием SiOz и фосфора. [c.756]

    Бородулин А. В., Семикин И. Д. Применение общих основ тепловой работы печей к расчету технических показателей доменной плавки.— Тр. конф. по основам автоматич. уггр. доменным процессом . Днепропетровск, 1968, с, 1-11. [c.156]

    Научные работы в этой области уже наметили контуры заводов будущего с непрерывным сталеплавильным и сталеперерабатывающим производством. Они показали возможность создания на основе применения кислорода в сочетании с природным газом моношихтного доменного процесса с выдачей из домны чугуна (или соответствующих полупродуктов [c.6]


Смотреть страницы где упоминается термин Основы доменного процесса: [c.62]    [c.647]    [c.116]    [c.85]    [c.115]    [c.191]    [c.185]    [c.9]    [c.5]   
Смотреть главы в:

Коксохимическое производство -> Основы доменного процесса




ПОИСК





Смотрите так же термины и статьи:

Доменный процесс

Домены

Основы процессов

Теоретические основы доменного процесса



© 2025 chem21.info Реклама на сайте