Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наука—основа химической промышленности

    Велико значение каталитических процессов в химии. Каталитические реакции (реакции с участием катализаторов) составляют основу (примерно 90%) процессов важнейших отраслей химической промышленности. Поэтому развитие науки о катализе и механизме действия катализаторов является важнейшим направлением исследовательских работ. [c.179]


    Сведения о свойствах веществ и закономерностях химических реакций составляют научную основу химического производства, фундамент химической технологии. Химическая технология — это наука, разрабатывающая промышленные методы превращения исходных веществ (сырье) в новые вещества (продукты). Основная задача химической технологии — создание таких производств, которые позволяли бы получать высококачественную продукцию с наименьшими затратами труда, сырья, энергии и времени. Эти проблемы рассматриваются такими химико-технологическими дисциплинами, как технология неорганических веществ, технология электрохимических производств, технология синтетического каучука и резины, пластических масс, биохимических производств и т. д. [c.726]

    Для химической промышленности, как отрасли крупномасштабного материального производства, имеет значение не только технический, но и тесно связанный с ним экономический аспект, от которого зависит нормальное функционирование и развитие производства. Этот аспект рассматривает экономика химической промышленности, то есть наука, изучающая уровень использования всех видов ресурсов химического производства и разрабатывающая на основе его анализа наиболее эффективные пути и методы его организации и развития. [c.79]

    Задача интенсификации развития химии как науки и производства имеет ряд существенных особенностей по сравнению с задачами интенсификации других отраслей общественного производства. В общем случае ускорение научно-технического прогресса и рост производительности труда в химической промышленности происходят по всем пяти компонентам, которые, по К. Марксу, составляют производительные силы общества, а именно за счет совершенствования 1) специальных знаний и общей культуры че-ловека-труженика, 2) орудий труда, т. е. техники, 3) научных исследований, результаты которых материализуются в форме новой техники и технологии, 4) использования в производстве сил природы, т. е. естественных источников сырья, и 5) форм и методов организации производства. Но в отличие от научно-технического прогресса в других отраслях промышленности, в интенсификации химического производства особую роль играют первый и третий из названных компонентов, ибо именно они призваны обеспечивать своего рода разведку путей развития по существу всех остальных видов производства. В самом деле, например, для максимального повышения экономической эффективности различных видов специального и общего машиностроения, приборостроения и энергетики революционизирующее значение имеют 1) снижение массы и пространственных габаритов машин на единицу мощности 2) использование недефицитных видов сырья без снижения качества продукции 3) механизация и комплексная автоматизация производственных процессов на основе электроники, электротехники, квантовой электродинамики, теории информации и т. д. И, как видно, все эти факторы зависят в первую очередь от успехов химии, от качества разработанных в лаборатории и созданных в промышленности материалов. Ведь снижение массы машин на единицу мощности или поиск недефицитных видов сырья — это задача почти чисто химическая, причем теоретическая, поисковая. И в этой поисковой, разведочной роли состоит основная особенность интенсификации развития химии как науки и производства. [c.225]


    Кинетические методы в настоящее время все шире применяются во многих областях химии, техники, биологии и медицины, позволяя глубже понять механизмы химических реакций, лежащих в основе различных промышленных и природных процессов, открывая новые подходы к управлению этими процессами. Такой широкий диапазон использования кинетических методов привел к тому, что интерес к химической кинетике проявляют не только химики, по и специалисты смежных областей науки и техники. [c.3]

    Особенно быстро начинает развиваться органическая химия с 60-х годов прошлого столетия, когда А. М. Бутлеров создал теорию химического строения органических соединений, ставшую научной основой для дальнейшего развития исследований в этой области химии. Немаловажную роль сыграли в развитии химической науки развивающиеся буржуазные общественно-экономические отношения, и в первую очередь рост производительных сил. Однако в дореволюционной России химическая промышленность не получила должного развития. Только победа Великой Октябрьской социалистической революции создала в нашей стране благоприятные условия для развития химической науки, и в частности органической химии. За годы советской власти родилась мощная химическая промышленность. Впервые была создана нефте- и газоперерабатывающая промышленность, началось производство пластических масс, искусственных волокон и каучуков. Стала развиваться химия красителей, лекарственных веществ, витаминов и моющих средств. Органические соединения начали применяться практически во всех отраслях промышленности лакокрасочной, фармацевтической, пищевой, топливной, кожевенной, текстильной и др. [c.7]

    Первое из них заключается в следующем. Химик, приступающий к изучению других областей прикладной химии, например так называемой тяжелой химической промышленности, имеет достаточную подготовку по неорганической, органической, аналитической и физической химии и в области соответствующей прикладной дисциплины. Между тем, многолетний опыт работы с лицами, окончившими различные институты, показывает, что далеко не так обстоит дело с прикладной химией коллоидных и аморфных веществ. Недостаточна подготовка, главным образом, по физической химии. Эта наука так широка, что для полноценного усвоения предмета учащимися приходится ограничивать объем элементарного курса. При подборе учебного материала преподаватели физической химии обычно не уделяют достаточно внимания вопросам, особенно важным для понимания проблем, которым посвящена эта книга, или вовсе упускают эти вопросы. Будучи убеждены, что только правильные научные представления могут служить надлежащей основой для изучения промышленной технологии, мы считаем целесообразным первую часть книги посвятить развитию этих основных представлений, отсутствующих у среднего читателя. [c.7]

    Мировой известностью пользуется гениальный русский ученый А. М. Бутлеров (1828—1886). Главные его работы посвящены исследованиям в области органической химии. Он также относится к числу ученых-новаторов, которые прокладывают совершенно новые пути в науке, не хотят быть рабами старых традиций. Бутлеров создал теорию строения органических соединений, лежащую в основе современной органической химии. Структурная теория Бутлерова явилась важнейшим звеном в утверждении и развитии атомно-молекулярного учения. Бутлеров разработал ряд синтезов, легших в оспову развития современных отраслей химической промышленности. [c.12]

    Разные причины способствовали этому запросы быстро развивавшейся химической промышленности, требовавшей сведений о плавкости металлов, давлении паров растворов, растворимости солей появление новых точных методов измерения температуры, давления и электрического сопротивления создание осмотической теории растворов Вант-Гоффа, теории растворов электролитов Аррениуса и быстрое развитие теории фазовых равновесий на основе работ Гиббса, Коновалова и Розебума и, наконец, потребности других смежных наук. [c.195]

    Первый том монографии посвящен развитию химической науки и созданию материально-технической базы химической промышленности. В свете исторических решений Коммунистической партии и Советского правительства, на основе обширного фактического материала рассматриваются особенности развития отечественной химической индустрии от периода ее восстановления после гражданской войны до наших дней. [c.9]

    В период 1946—1960 гг. химическая промышленность играла активную роль в восстановлении и развитии народного хозяйства. Однако темпы роста и структура химического производства в целом пе отвечали и полной мере новым задачам советской экономики. Дальнейшее ее развитие в сочетании с задачей всемерного повышения материального благосостояния советского парода требовало разностороннего использовапия достижений химической науки, всемерного усиления научно-технического и производственного потенциала отрасли. Химизация народного хозяйства, материальной основой которой является химическая индустрия, приобретала все большее значение для решения глобальных социально-экономических задач советского общества. [c.286]


    История химии говорит о том, что ее успехи определяются потребностями производства. Но, развиваясь на производственной основе, химическая наука со своей стороны оказывает огромнейшее влияние на развитие химической промышленности и сельского хозяйства. [c.9]

    В конце XIX и начале XX века на базе теории вероятностей началось создание современной математической статистики в связи с запросами биологии и экономики. За последние десятилетия математическая статистика как метод исследования стала интенсивно применяться в таких областях науки и техники, как агробиология, медицина, машиностроение и приборостроение, химическая промышленность, металлургия и др. Особенно интенсивное развитие статистических методов исследования наблюдается в последние годы. Совсем недавно на основе теории вероятностей создалась совершенно новая дисциплина—теория информации, первоначальной задачей которой было изучение вопросов, связанных с передачей сигналов в радиотехнике. На базе теории информации стала развиваться кибернетика—наука об управлении. Совершенно неожиданно теория информации нашла применение в оптике. Весьма перспективным представляется сейчас применение идей теории информации при документации научных и технических материалов. В связи с интенсивным развитием ядерной физики появилась новая область применения теории вероятностей—статистика счета ядерных частиц. [c.7]

    Электрохимия относится к тем разделам химической науки, которые на протяжении последних десятилетий развивались особенно быстро и достигли уровня, при котором, подобно химической термодинамике, могут служить надежной основой химической технологии. Уже в настоящее время электрохимические методы широко и плодотворно используют в промышленности. Они лежат в основе таких многотоннажных производств, как получение хлора и каустической соды, кислородных соединений хлора, марганца, хрома, надсерной кислоты, элементного фтора, некоторых органических и металлоорганических соединений. Эти методы составляют основу технологии получения многих металлов, включая алюминий, магний, медь, цинк, свинец, бериллий, титан. С их помощью наносят защитные декоративные металлические покрытия на изделия мащиностроения и приборостроения. [c.5]

    В вузах ЧССР наука о теплопередаче стала отдельным предметом преподавания. Вследствие того, что в этой области теория проверяется и развивается на основе обобш,ения результатов целого ряда экспериментов и учета производственных условий и опыта, в настоящем труде уделяется необходимое внимание взаимосвязи указанных факторов. Исходя из соответствующих теоретических предпосылок, в книге дано решение задач математического и конструкционного характера кроме того, в книге описываются опыты, имеющие целью практическое решение теплотехнических задач. При этом, учитывая разнообразие материалов, применяемых в химической промышленности, подчеркивается необходимость использования формул, имеющих наиболее широкое применение. [c.3]

    Органическая химия — наука, достижения которой лежат в основе развития промьииленности органического синтеза, вырабатывающей разнообразные химические продукты — углеводороды, карбоновые кислоты и их эфиры, спирты, альдегиды, хлорорганические соединения и другие органические вещества. В свою очередь химические соединения, вырабатываемые промышленностью основного органического сиитеза, служат полупродуктами для производства пластических масс, синтетических волокон, синтетических каучуков, органических красителей, синтетических моющих средств, средств защиты растении и многнх других. Поэтому при изучении курса органической химии читатель должен составить себе ясное представление о неразрывной связи науки с техникой, промышленностью и сельским хозяйством. [c.472]

    Так, принятые XXV съездом КПСС Основные направления развития народного хозяйства СССР на 1976—1980 годы предусматривают увеличение общего производства промышленной продукции за пятилетие на 35—39%, тогда как производство продуктов химической и нефтехимической ппоглышленности возрастет за этот же срок на 60—65%. При этом будет значительно расширен ассортимент химических продуктов и повышено их качество. Эти задачи будут решаться па основе технического иеревоорух<ения химической промышленности, разработки новых технологических процессов, внедрения в пpiJИзвoд твo достижений современной химической науки.  [c.16]

    Достижения биогехнологии позволяют в принципе превратить солнечную энергию, запасенную в биомассе растений, в исходное сырье для химической промышленности. Надо еще учесть, что в настоящее время мы находимся в самом начале развития этой области науки и техники. Тем не менее уже имеются примеры успешного использования ферментов (биохимических катализаторов с высокой избирательностью действия) для получения ряда веществ. Сейчас методами биотехнологии в широких масштабах получают шесть важных химических соединений, включая этанол и уксусную кислоту. Они, конечно, сейчас болс е дороги, чем получаемые из нефти. Но со временем цена нефти растет, а биотехнологические способы становятся более конкурентоспособными. Весьма вероятно, в недалеком будущем основой большой химии будут нефть, уголь и биомасса. Конкретный вклад каждого из источников будет опред, 1яться экономической ситуацией в каждой конкретной стране. [c.229]

    Однако время показало, что это не так. Благодаря усилиям таких энтузиастов как Ю. А. Авдонин, Н. И. Белов, В. П. Дубяга, Ф. Н. Карелин, Е. Е. Каталевский, Н. Е. Кожевникова, Р. Г. Кочаров, Л. С. Лукавый, Н. И. Николаев, Л. П. Перепечкин, К- М. Салдадзе, В. А. Фед-ченко и др. при активной поддержке Государственного Комитета СМ СССР по науке и технике. Научного Совета АН СССР Теоретические основы химической технологии . Министерства химической промышленности и других организаций и ведомств обратный осмос и родственный ему процесс — ультрафильтрация вышли в нашей стране на порог широкого промышленного использования. [c.7]

    Автор благодарит всех, кто откликнулся на книгу Мембранные процессы разделения жидких смесей ( Химия , 1975), и особенно чле-нов-корреспондентов АН СССР В. А. Малюсова и П. Г. Романкова, кандидатов технических наук Н. Н. Смирнова и Л. П. Холпанова, выступивших с рецензиями в журналах Теоретические основы химической технологии (№ 3, 1977) и Химическая промышленность (№ 3, 1977), за лестные о ней отзывы, но прежде всего за критические замечания и пожелания, которые во многом учтены при работе над рукописью данной книги. [c.10]

    Автор весьма признателен заместителям министра химической промышленности СССР А. Н. Устькачкинцеву и профессору, д. т. н. А. С. Чеголе, научному руководителю приоритетного направления Миннауки РФ и РАН научных исследований в химической технологии Создание энергосберегающих процессов на основе рациональных химико-технологических систем, оптимизации теплообменного оборудования и эффективных технологий разделения смесей академику А. М. Кутепову и начальнику управления новых материалов и технического прогресса в химии Министерства науки и технической политики России, члену-корреспонденту Международной инженерной академии В. Н. Новосельцеву, оказавшим в 1988—1993 гг. Существенную поддержку развитию научных исследований по применению искусственного интеллекта и разработке ЭС в химической технологии. [c.10]

    Химическая промышленность начала создаваться на рубеже XVIII и XIX веков и за исторически короткий период, насчитывающий всего 120—150 лет, превратилась в технически развитых странах в одну из основных и ведущих отраслей народного хозяйства. С развитием химической промышленности возникла потребность в инженерной науке, обобщающей закономерности основных производственных процессов и разрабатывающей методы расчет9в аппаратов на основе их рациональной классификации. [c.11]

    Особенно бысгро начинает развиваться органическая химия с 60-х годов прошлого столетия, когда А. М. Бутлеров создал теорию химического строения органических соединений, ставшей научной основой для дальнейшего развития исследований в этой области химии. Немаловажную роль сыграли в развитии химической науки развивающиеся буржуазные общественно-экономические отношения, и в первую очередь рост производительных сил. Однако в дореволюционной России химическая промышленность, как и химическая наука, не получили должного развития. Только победа Великой Октябрьской социалистической революции создала в нашей стране благоприятные условия для развития химической науки, и в частности органической химии. За годы советской власти родилась мощная химическая промышленность. Впервые была создана нефте-и газоперерабатывающая промышленность, началось производство пластических масс, искусственных волокон и каучуков. Стала развиваться химия красителей, лекарственных веществ, витаминов и моющих средств. Органические соединения начали применяться практически во всех отраслях промышленности лaкoкpa o нoй, фармацевтической, пищевой, топливной, кожевенной, текстильной и др. Без органической химии сейчас нельзя представить современное сельское хозяйство, машино- и самолетостроение, транспорт и электропромышленность. Незаменимое применение в строительной индустрии нашли пластмассы, полимерцементы и полимербетоны, клеи и герметики, кремнийорганические соединения, поверхностноактивные вещества и другие продукты. [c.7]

    Однако к настоящему времени назрела потребность в существенной переработке учебника Н. Л. Глинки. Необходимость этого связана, в первую очередь, с тем, что на протяжении последних десятилегий химическая промышленность СССР бурно развивалась, в результате чего резко усилилось проникновение химии в другие отрасли народного хозяйства и возросла ее роль в подготовке специалистов многих профессий. Этот период времени характеризовался также колоссальным ростом объема фактического материала химии, что заставляет по-новому подойти к его отбору для учебника. Наконец, интенсивно продолжался процесс превращения химии из эмпирической науки в область естествознания, покоящуюся на строгих научных основах, — прежде всего, на современных представлениях о строении вещества и на идеях термодинамики. Все эти обстоятельства привели к существенному изменению школьной программы по химии, в которой теперь предусмотрено изучение ряда вопросов, рассматривавшихся ранее лишь в высшей школе. [c.13]

    Каталитические методы прямого преобразования солнечной энергии в энергию химических топлив рассматриваются в настоящее время как один из наиболее перспективных способов запасания солнечной энергии. На основе этих методов представляется в принципе воз.можным обеспечить общество будущего необходимыми ресурсами энергии и некоторы.ми ценными веществами для химической промышленности. Систематические исследовакия, направленные ьа со.чдание прямых способов преобразования солнечной энергии в химическую энергию топл ш, были начаты в пашей стране па инициативе акад. 11 Н. Семенова (см. ставшую классической его статью Об энергетике будущего в журнале 1-1аука и жизнь , 1972, № 10 п 11), который первым осознал реальность принципиального решения этой задачи при современном уровне развития науки и техники. [c.261]

    Реализация данной гфограммы позволила ученым вузов внести теоретический и практический вклад в развитие химической науки, приоритетных химических отраслей промышленности, разработку энерго-и ресурсосберегающих, экологически чистых технологий, синтез биологически активных веществ и новых химических материалов с заданными свойствами. Реализация программы явилась ключевым и абсолютно необходршым аспектом непрерывного повышения профессиональной квалификации преподавательского состава высшей школы, основой актуализации инженерной и аспирантской подготовки кадров. Она позволила вузам в значительной мере сохранить и стимулировать развитие ведущих научно-педагогических школ, совершенствовать учебно-методические базы для подготовки магистров, специалистов высшей квалификации, переподготовки специалистов в вышеназванных областях химической науки и производства. Выполняя ряд проектов программы в кооперации с сотрудниками Государственных научных центров, институтов Российской Академии наук. Российской Академии медицинских наук. Российской Академии сельскохозяйственных наук и отраслевых научных организаций, вузовские ученые широко [c.5]

    Мирсаев Р. Н. Многотоннажные отходы химической промышленности в составах шлаковых вяжущих и бетонов на их основе Дис.. .. канд. техн. наук.— Уфа.— 1998.— 184 с. [c.137]

    АПРОБАЦИЯ РАБОТЫ. Материалы диссертации доложены на Международной конференции "Перспективы развития естественных наук на Западном Урале" (г. Пермь, 1996) Международной научно-технической конференции "Перспективные химические технологии и материалы" (г. Пермь, 1997) 1-м Международном симпозиуме "Наука и технология углеводородных дисперсных систем" (г. Москва, 1997) 29-й научно-технической конференции "Химия и химическая технология" (г. Пермь, 1998) 12-й Международной конференции молодых ученых по химии и химической технологии "МКХТ-98" (г. Москва, 1998) Межрегиональной научно-технической конференции, посвященной 25-летию Дзержинского филиала НГТУ "Химическая промышленность современные задачи техники, технологии, автоматизации, экономики" (г. Дзержинск, 1999) 10-й Всероссийской научно-технической конференции "Поверхностно-активные вещества и препараты на их основе" (г. Белгород 2000). [c.5]

    Несмотря на высокий уровень химической науки, дореволюционная Россия по состоянию химической промышленности значительно отставала от других стран. Это объясняется тем, что основные отрасли промышленности находились тогда в руках иностранцев, не заинтересованных в развитии народного хозг"1-ства. После Октябрьской революции началось бурное развитие всех отраслей промышленности, в том числе и химической Быстрым темпам развития химической промышленности способствовали решения майского (1958 г.) Пленума ЦК КПСС, положенные в основу семилегнего плана развития народного хозяйства СССР (1959—1965 гг.), в котором особое вннма ис уделено развитию химии и технологии полимеров. [c.8]

    В создании Справочника приняли участие крупные ученые и ведущие специалисты химических отраслей из Москвы, Санкт-Петербурга, других городов страны (всего около 150 авторов). Материалы являются оригинальными авторскими разработками либо подготовлены на основе современной литературы. Справочник обобщает огплт работы российских и зарубежных ученых и технологов второй половины XX в. и показывает перспективу развития химической промышленности и смежных областей науки и производства. [c.3]

    Рост единичной мощности агрегатов, интенсификация технологических процессов, т. е. увеличение объемов и скоростей движения подчас пожаро- и взрывоопасных материалов, применение высоких температур и давлений, максимальная механизация и автоматизация выдвигают повышенные требования к надежности и эффективности пожаро- и взрывозащиты. Как показывает практика, авария даже одного крупного агрегата, сопровождающаяся пожаром и взрывом, а в химической промышленности они часто сопутствуют один другому, может привести к весьма тяжким последствиям не только для самого производства и людей его обслуживающих, но и для окружающей среды. В этой связи чрезвычайно важна правильная оценка уже на стадии проектирования пожаро- и взрывоопасности технологического процесса, выявление возможных причин аварий, определение опасных факторов и научно обоснованный выбор способов и средств пожаро- и взрывопредупреж-дения и защиты. Именно этой цели служат ГОСТ ССБТ, СНиП, нормы технологического проектирования, созданные на основе изучения и обобщения науки и практики в области борьбы с пожарами и взрывами на производстве. [c.324]

    ЦК КПСС и Совет Министров СССР поставили перед Башкирской партийной организацией и хозяйственными руководителями задачу — организовать производство нефтехимической продукции на основе новейших достижений науки и техники. На это было обращено внимание в письме ЦК КПСС и Совета Министров СССР от 5 июня 1958 года О дальнейшем развитии механизации и автоматизации производственных процессов , а также в постановлении Бюро ЦК КПСС по РСФСР по отчету Башкирского обкома КПСС о развитии химической промышленности от 12 мая 1959 года. КомР1тет ло автоматизации и машиностроению при Совете Министров СССР издал приказ о превращении Уфимского нефтеперерабатывающего завода им. [c.155]

    Последнее десятилетие оказалось весьма продуктивным. Были исследованы многие из 100-150 фотохимических и химических процессов, которые надлежало изучить. Были измерены атмосферные концентрации многих следовых примесей. И все же содержание в стратосфере двух важных соединений хлора, НОС1 и СЮМОг, еще нигде не определено. Предстоит уточнить скорости многих важных реакций, все еще отсутствуют данные по распределению продуктов в некоторых химических процессах. Тем не менее первоначальное исследование, предпринятое Национальной академией наук, и стимулированные им исследовательские программы, а также сопутствующие работы обеспечили прочную и своевременную основу для законодательных актов, регулирующих использование ХФМ. Химическая промышленность предложила альтернативные легче разрушающиеся вещества для замены ХФМ, например, в аэрозолях, системах кондиционирования воздуха, холодильных камерах. Работают программы контроля, позволяющие следить за тенденциями в изменении состава стратосферы. История со стратосферным озоном служит убедительным доказательством возможностей науки в исследовании, прояснении ситуации и поиске путей решения проблемы потенциальной угрозы окружающей среде. Поскольку опасность была осознана достаточно рано, проведенный объективный анализ и всестороннее изучение проблемы позволили свести к минимуму неопределенность ситуации и избежать введения необдуманных запретительных мер. Химикам принадлежала лидирующая роль как в распознавании опасности, так и в последующих разработках. [c.20]

    Дополнительного пояснения требует взаимоотношение между основным органическим синтезом и нефтехимическим синтезом. Последний термин появился в связи с переходом химической промышленности на нефтяное сырье. Его стали иногда прот 1вопостаВ лять первому (как и нефтехимическую промышленость химической), появилось даже понятие углехимического синтеза . Между тем, для этого нет никаких оснований, поскольку хорошо известно, что не имеется существенных различий при производстве того или иного продукта, например, из ацетилена или из ароматических углеводородов каменноугольного или нефтяного происхождения. Кроме того, нефтехимический синтез нередко трактуют слишком широко, относя к нему всю совокупность синтезов на основе нефтяного сырья, в том числе производство ряда неорганических и полимерных материалов, которые давно выделились в специфические области химической науки и технологии. Ограничением всех этих терминов является отрасль знания, которую они представляют. С этой ТОЧКИ зрения понятия основного органического и нефтехими- [c.12]


Библиография для Наука—основа химической промышленности: [c.232]    [c.201]    [c.379]    [c.277]   
Смотреть страницы где упоминается термин Наука—основа химической промышленности: [c.16]    [c.10]    [c.15]    [c.17]    [c.373]    [c.321]    [c.9]    [c.10]    [c.121]   
Химическая литература Библиографический справочник (1953) -- [ c.232 ]




ПОИСК







© 2025 chem21.info Реклама на сайте