Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции и ход анализа анионов

    С помощью групповых реа кций получают довольно точные сведения о присутствии или отсутствии многих ионов. При этом Обычно применяют реакции осаждения или окисления-восста-новления, характерные для ионов определенной группы. Групповые реакции имеют особенно большое значение в анализе анионов, поскольку практически не существует систематического хода разделения анионов. [c.54]


    При анализе анионов часто применяют также дробный метод. Б этом случае анионы обнаруживают в отдельных порциях испытуемого раствора с помощью их характерных реакций, устраняя там, где это необходимо, влияние посторонних ионов. [c.212]

    Глава 16 Качественный анализ анионов. Аналитическая классификация анионов по группам. Аналитические реакции анионов первой аналитической группы [c.418]

    Как и катионы, многие анионы входят в состав лекарственных препаратов. При контроле качества лекарственных средств, технологических стадий их получения, лекарственного сырья и в ряде других случаев возникает необходимость проведения качественного и количественного анализа анионов. Идентификацию анионов чаще всего проводят с использованием различных аналитических реакций, позволяющих открывать эти анионы. [c.418]

    Глава 17 Качественный анализ анионов. Аналитические реакции анионов второй, третьей аналитических групп и некоторых органических анионов [c.450]

    Анионы обнаруживают после открытия катионов. Действием групповых реактивов определяют, к какой группе относится анион, затем характерными реакциями обнаруживают анион по прописи анализа группы. Если было установлено, что реакция раствора нейтральна и обнаружены катионы К+ или Na+, то это значит, что в растворе могут присутствовать только анионы сильных кислот (С1 , 80 , ЫО идр.). [c.89]

    Приготовление раствора для анализа анионов. Если в растворе присутствуют ионы К , Na или NH , то для анализа анионов используют водный раствор исследуемой соли. Если же присутствуют катионы II—IV групп и магний, то их необходимо предварительно удалить. Для этого в фарфоровую чашку помещают около I г анализируемой соли и приблизительно столько же безводного карбоната натрия, добавляют 20—30 мл воды и кипятят при постоянном помешивании 3—5 мин. После центрифугирования и отделения осадка раствор осторожно нейтрализуют уксусной кислотой до нейтральной реакции и используют для обнаружения анионов. [c.199]

    Реакции осаждения с использованием групповых реагентов лежат в основе систематического качественного анализа (см. гл. 6—10). Так, катионы обычно разделяют на несколько групп при помощи ионов хлора, сульфида и карбоната, а схема систематического хода анализа анионов основывается на их осаждении под действием различных катионов (в основном это Ba + и Ад+). [c.72]


    Полярография применяется также при изучении различных физико-химических явлений. По полярограммам судят о том, в каком виде присутствуют в растворе восстанавливающиеся ионы, определяют состав и прочность комплексов, число электронов, принимающих участие в акте восстановления, исследуют кинетику электрохимических превращений и, в частности, устанавливают стадийность электрохимических процессов. При этом во всех тех случаях, когда изучаются реакции электровосстановления, наиболее целесообразно применять ртутный капельный электрод. Именно в реакциях восстановления с наибольшей полнотой проявляются положительные свойства этих электродов чистота поверхности, достигаемая благодаря непрерывному ее обновлению в процессе капания, широта диапазона отрицательных потенциалов,, обуславливаемая высоким водородным перенапряжением на ртути и обеспечивающая проведение почти любых восстановительных реакций, хорошая воспроизводимость данных и т. п. В то же время ртуть, вследствие невысокого перенапряжения на ней кислорода и возможности ее окисления, не очень подходит для изучения реакций электроокисления и для анализа анионов. Поэтому наряду с применением капающих ртутных электродов в полярографии используются твердые микроэлектроды. Наилучшим материалом для твердых микроэлектродов оказалась платина, обладающая [c.335]

    Полярография применяется также при изучении различных физико-химических явлений. По полярограммам судят о том, в каком виде присутствуют в растворах восстанавливающиеся ионы, определяют состав и прочность комплексов, число электронов, принимающих участие в акте восстановления, исследуют кинетику электрохимических превращений и, в частности, устанавливают стадийность электрохимических процессов. При этом во всех случаях, когда изучаются реакции электровосстановления, целесообразнее применять ртутный капельный электрод. Именно в реакциях восстановления с наибольшей полнотой проявляются положительные свойства этого электрода чистота поверхности, достигаемая благодаря непрерывному ее обновлению в процессе капания широта диапазона отрицательных потенциалов, обусловливаемая высоким водородным перенапряжением на ртути и обеспечивающая проведение почти любых восстановительных реакций хорошая воспроизводимость данных и т. д. В то же время ртуть вследствие невысокого перенапряжения на ней кислорода и возможности ее окисления не совсем удобна при изучении реакций электроокисления и анализе анионов. Поэтому наряду с капающими ртутными катодами в полярографии используют твердые микроэлектроды. Наилучшим материалом для твердых микроэлектродов оказалась платина, обладающая высокой химической стойкостью, значительным перенапряжением кислорода и хорошими механическими свойствами. Платиновые микроэлектроды применяются не только при изучении окислительных процессов, но и при полярографическом анализе расплавленных солей (Делимарский). Полярографический анализ с твердыми микроэлектродами проводят так же, как и с ртутным капельным электродом. Для создания стационарности диффузии используют вращение электрода, его колебания, перемешивание раствора и т. д. Обновление поверхности электрода и удаление с нее продуктов реакции осуществляют или механически, или электрохимическим растворением. Однако если даже принять все эти меры, то и тогда не удается достигнуть точности и воспроизводимости, свойственных ртутным капельным электродам. Полярография с твердыми катодами поэтому менее распространена, и к ней прибегают лишь в тех случаях, когда применение капельных ртутных электродов невозможно. [c.409]

    Сначала проводят обычные, описанные ранее (стр. 384) предварительные испытания смеси потом частные реакции на отдельные анионы. Лишь после этого приступают к систематическому анализу анионов. [c.393]

    Установив группу, к которой принадлежит анион исследуемой соли, проделать реакции на анионы так, как указано в ходе анализа всех анионов (стр. 155), [c.161]

    В противоположность катионам анионы в большинстве случаев не мешают обнаружению друг друга. Поэтому к реакциям отделения анионов приходится прибегать только в сравнительно редких случаях. Чаще же обнаружение анионов ведут дробным методом, т. е. прямо в отдельных порциях исследуемого раствора. В соответствии с этим при анализе анионов групповые реагенты применяются обычно не для разделения групп, а лишь для их обнаружения. Отсутствие в исследуемом растворе какой-либо группы значительно облегчает работу. [c.316]

    Хотя та или иная последовательность реакций при анализе анионов не является, таким образом, обязательной и мон<ет меняться, все же в целях удобства и экономии времени следует придерживаться определенного плана работы. Именно, наиболее целесообразно начинать анализ с ряда предварительных испытаний, имеющих целью установить отсутствие в растворе некоторых анионов и тем самым упростить анализ. [c.349]

    Хотя та или иная последовательность реакций при анализе анионов не обязательна и может меняться, все же в целях удобства и экономии времени следует придерживаться определенного плана работы. Наиболее целесообразно начинать анализ с ряда предварительных испытаний для установления отсутствия в [c.508]


    В аналитической практике сравнительно редко приходится прибегать к систематическому ходу анализа анионов в том смысле, как мы понимали это раньше (стр. 456). Чаще всего открытие анионов проводят дробным методом, т. е. в отдельных порциях исследуемого раствора и в произвольной последовательности. Только в сравнительно редких случаях приходится прибегать к реакциям отделения. Важнейшие из них были рассмотрены в 92 (открытие ионов РО , AsO и AsO ), в 99 (открытие ионов С1-, Вг" и J-), в 100 (открытие ионов S—, 50 , S. O и S07 ) и в 104 (открытие всех анионов II группы). [c.508]

    Как следует из анализа уравнения (4.19), уменьшение скорости реакции восстановления аниона SjO с ростом катодного потенциала наблюдается в области нулевого заряда, при переходе от <7 > О к < 0. Следовательно, спад тока на поляризационных кривых восстановления этого аниона на разных металлах наблюдается при разных потенциалах, и скорость реакции при Е = onst растет при переходе от металла с менее отрицательным значением к металлу с более отрицательным значением Е (рис. 4.25). Естественно, что при введении поправки на Jo-потенциал, т. е. в координатах ИТЗ, полу- [c.249]

    Рассмотрим ряд экспериментальных данных по ингибированию электрохимических реакций нейтральными ПАОВ со значением а<2. В качестве примера на рис. 5.4 приведены экспериментальные данные по торможению реакции разряда аниона персульфата на ртутном капельном электроде спиртами предельного ряда. Как видно из рисунка, в этих системах существуют значительные дополнительные эффекты ингибирования помимо эффекта блокировки . Анализ этих данных проводился путем их сопоставления с уравнением, которое получается из уравнения (5.39) при г=1. [c.168]

    В пособии объединены традиционный практикум по неорганической химии и основы качественного полумикроанализа Первая часть содержит работы общего характера приготовление растворов, гомогенные и гетерогенные равновесия, комплексные соединения, окислительно-восстановительные взаимодействия. Во второй приведены работы по химии соединений наиболее важных неметаллически элементов, описываются качественные реакции отдельных анионов и систематический ход анализа. В третьей рассматриваются качественный анализ катионов и простейшие синтезы некоторых неорганических соединений. [c.296]

    Большую серию экспериментальных исследований по анализу неорганических ионов методом тонкослойной хроматографии провел X. Зайлер [111]. Им выполнен анализ катионов, предварительно разделенных на группы, и анализ анионов. Он установил, что в условиях тонкослойной хроматографии неорганических ионов нельзя пользоваться величиной Rf для идентификации ионов, так как эта величина не является постоянной, как это имеет место в бумажной хроматографии. Величина Rf зависит не только от свойств носителя и состава подвижного раствора, но и от присутствия сопутствующих ионов. Поэтому X. Зайлер вынужден ограничиться только лишь указанием на постоянную последовательность высот поднятия ионов на тонкослойной хроматограмме, полученной по восходящему методу. При обработке хроматограмм можно точно идентифицировать отдельные ионы по известным реакциям обнаружения. [c.185]

    Сначала проредят предварительные испытания смеср (см. 26, стр. 413), а затем — частные реакции на отдель ные анионы. Лишь после этого приступают к систематиче скому анализу анионов. [c.426]

    Изучение аналитических реакций ионов создает возможнс для проведения анализа неизвестных веществ или их сме Качественный анализ неизвестных веществ можно вести следующей схеме 1) предварительные испытания 2) растворе образца 3) анализ катионов 4) анализ анионов. [c.194]

    Kt ,An 5imKt 4- иАп равно ПР = Ад , где —активность катиона Kt, а — активность аниона Ап. Показателем произведения растворимости рПР называют логарифм произведения растворимости, взятый с обратным знаком. При вычислении растворимости той или иной малорастворимой соли в юде или в растворе других солей по величине произведения растворимости следует учитывать 1) реакции образующихся катионов с гидроксильными ионами воды, 2) реакции образующихся анионов с ионами водорода, 3) ионную силу раствора, от которой зависят коэффициенты активности, а в некоторых случаях еще и 4) возможности образования комплексных ионов. Выполнение таких расчетов описано в учебниках аналитической химии, наи лее полно в книге Н. П. К о м а р ь. Основы качественного химического анализа, т. I, Харьков, 1955, стр. 169—178. [c.76]

    В тйбл. 25 приведены основные реакции техногенного метасоматоза и их параметры, рассчитанные нами по уравнению (6) и изобары реакции. Данные таблицы показывают, что подавляющее большинство реакций техногенного метасоматоза экзотермично и для их протекания благоприятны условия I подзоны и верхней части II подзоны. Эндотермические реакции характерны для II и III подзон. Анализ гидрогеохимических материалов с позиций химической термодинамики необратимых процессов с учетом пределов колебаний концентраций ингредиентов в метаморфизованных водах показывает, что в условиях зоны техногенеза континентальной гидролитосферы доминируют метасоматические реакции замещения анионов кристаллической решетки минералов пород анионами метаморфизованных вод. При этом наибольшее распространение получил техногенный метасоштоз флюорита и гипса по карбонатным минералам. Реакции техногенного метасоматоза наблюдаются при загрязнении природных подземных вод сточными водами производства удобрений, рудообогащения, переработки нефти и газа. [c.130]

    В отличие от анализа катионов анионы в большинстве случаев открывают дробными реакциями в присутствии других анионов. Поэтому и групповые реактивы AgNOg и Ba lj применяются при анализе анионов не для разделения групп, а только для их обнаружения. Если какая-либо группа отсутствует полностью, ее групповой реактив не дает с анализируемым раствором никакого осадка. Из этого становится ясным, что не имеет смысла делать реакции на отдельные анионы этой группы таким образом, работа значительно облегчается. [c.133]

    Как уже указывалось, при анализе анионов сравнительно редко приходится прибегать к систематическому ходу анализа в том смысле, как мы понимали это раньше. Чаще всего обнаружение их ведут дробным методом, т. е. прямо в отдельных порциях исследуемого раствора в произвольной последовательности. Только в сравнительно редких случаях приходится прибегать к реакциям отделения. Важнейшие из них были рассмотрены в 89 (обнаружение ионов P0J ", AsO и AsO ) и в 96 (обнаружение ионов S , S0 , SaOj ), а также при описании отдельных реакций. [c.348]


Смотреть страницы где упоминается термин Реакции и ход анализа анионов: [c.316]    [c.181]    [c.202]    [c.180]    [c.92]    [c.94]    [c.336]    [c.175]    [c.364]    [c.382]    [c.368]    [c.93]    [c.189]    [c.515]    [c.556]   
Смотреть главы в:

Курс аналитической химии Издание 2 -> Реакции и ход анализа анионов




ПОИСК





Смотрите так же термины и статьи:

Анализ анионов

Анализ анионов Предварительное изучение реакций анионов

Анализ реакций

Ани о н ы Реакции и ход анализа смеси анионов

Качественный анализ анионов. Аналитическая классификация анионов по группам. Аналитические реакции анионов первой аналитической группы

Качественный анализ анионов. Аналитические реакции анионов второй, третьей аналитических групп и некоторых органических анионов

Характерные реакции и систематический ход анализа первой группы анионов

Характерные реакции и систематический ход анализа смеси 1 анионов второй группы



© 2024 chem21.info Реклама на сайте