Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение нос,ходящее

    Одна из основных особенностей электрохимической системы заключается в пространственном разделении участников протекающей в ней реакции. Поэтому общая токообразующая реакция распадается здесь па две частные реакции, каждая из которых совершается на отдельном электроде. В соответствии с этим э.д.с. электрохимической системы, как отра.жение изменения ее химической энергии в ходе суммарной реакции, также должна представлять собой сумму двух электродных потенциалов. Каждый из иих отвечает изменению химической энергии при протекании частной электродной реакции. Таким образом, [c.156]


    С этой целью над перегонным кубом, в который загружается жидкое сырье, устанавливается укрепляющая колонна, предназначенная для ректификации поднимающихся из куба паров (рис. 111.43). Пары с верхней тарелки колонны отводятся в конденсатор (полный или парциальный), где образуются потоки подаваемого обратно в колонну жидкого орошения и отводимого в качестве продукта разделения дистиллята. В ходе перегонки составы загруженной в куб жидкости и поступающих в колонну паров непрерывно утяжеляются благодаря прогрессивному переходу НКК в паровую фазу. Тем не менее вполне возможно в течение достаточно длительного периода получать с верха укрепляющей колонны дистиллят постоянного состава, отвечающий практически чистому НКК. Этот важный результат достигается путем непрерывного увеличения удельного съема тепла в конденсаторе колонны, или, что то же, с помощью непрерывного увеличения флегмового числа. [c.219]

    На фиг. 51 представлен ход азеотропической перегонки для случая разделения бинарного азеотропа с помощью третьего компонента, образующего с компонентами системы тройной азеотроп, кипящий при наинизшей в системе температуре. Азеотропную перегонку вообще удобно вести в периодически действующей ректификационной установке, так как все необходимое количество третьего све.чзо,- ) компонента может [c.150]

    Ацетатный метод разделения. Ход анализа. К фильтрату от кремнекислоты осторожно прибавляют крепкий раствор соды до тех пор, пока жидкость не сделается темнокрасной и не появится легкая муть, ке исчезающая при помешивании. Объем жидкости должен быть около 200 мл, и во избежание разбрызгивания стакан следует накрывать часовым стеклом. Брызги с часового стекла споласкивают обратно в стакан. При постоянном, очень осторожном помешивании добавляют по каплям разбавленную соляную кислоту до того момента, когда исчезнет муть, а темнокрасный цвет жидкости еще сохраняется. Существенно для этой операции не применять избытка кислоты, иначе получится уксусная кислота и осаждение основных ацетатов железа и алюминия будет неполным. Однако если аналитик добавит избыток кислоты, операцию легко повторить. [c.158]

    При анализе различных схем разделения тройных систем изображение таких кривых ректификации, намечающих путь последовательно связанных в режиме полного орошения конод, позволяет добиться более наглядного представления о ходе процесса разделения. [c.251]

    Пусть сырье Ь имеет начальную концентрацию хь, меньшую, чем концентрация азеотропной смеси Е , отвечающая меньшему давлению р. , при котором работает одна из колонн. Если ввести в другую колонну, работающую под более высоким давлением р , смесь Ь сырья Ь и практически чистого азеотропа Е , то в ходе разделения из низа этой колонны будет поступать практически чистый компонент ш, а с верха — дистиллят, представляющий смесь, весьма близкую по составу к азеотропу Еу. Если смесь Еу подать в качестве сырья во вторую колонну, работающую под меньшим давлением р , то из ее низа отойдет уже практически чистый компонент а, а с верха колонны — та самая, близкая к азеотропу 2 система, которая в смеси с исходным сырьем Ь поступает на разделение в первую колонну. Концентрация х этой смеси Ь = Ь Е , очевидно, принадлежит интервалу хь<- х ь<. хе2- в рассматриваемой схеме разделения положительного гомоазеотропа компоненты а и IV исходной смеси отводятся в качестве нижних продуктов колонны. [c.325]


    На рис. УП.З представлена типичная схема двухколонной установки для разделения отрицательного гомоазеотропа, совмещенная с его изобарными диаграммами кривых начала кипения и конденсации при двух различных давлениях ру и р . Пусть сырье Ь имеет начальный состав х , больший, чем концентрация азеотропической смеси Е , отвечающая меньшему давлению р , при котором работает одна из колонн. Если в другую колонну, работающую под более высоким давлением ру, ввести смесь Ь сырья и практически чистого азеотропа Е , то в ходе разде.чения с верха этой колонны получим практически чистый компонент а, а с ее низа отойдет остаток, представляющий практически чистый азеотроп Еу. Если смесь Еу подать в качестве сырья в колонну, работающую под более низким давлением ра, то с верха ее поступит уже практически чистый компонент ю, а из низа — та самая система Е , смесь Ь которой с исходным сырьем Ь [c.325]

    Рпс. VII.7. Принципиальная схема Рис. VII.8. Ход нроцесса ректифи-разделения положительного гомо- кации на треугольной диаграмме азеотропа с помощью третьего ком- (к схеме, приведенной на рис. VII.7). понента, имеющего промежуточную летучесть. [c.333]

    Чем ниже температура кипення образовавшегося азеотропа, тем больше оказывается разность температур между ним и вторым компонентом системы, являющимся высококипящим, и тем легче осуществляется процесс разделения исходной смеси близкокипящих компонентов. В ходе разделения исходной системы в виде остатка получается высококипящий компонент, а дестил-латные пары состоят из образовавшегося азеотропа. [c.138]

    Преимущество сосудов с приваренной трубчаткой состоит в том, что систему трубок можно разделить на несколько секций, питаемых независимо друг от друга. Благодаря этому, включая и выключая отдельные секции, можно регулировать мощность нагрева. Такое разделение поверхности нагрева на несколько секций выгодно в случаях, например, выпаривания воды из раствора или дистилляции какой-либо смеси, когда по ходу процесса объем содержимого котла уменьшается и уровень жидкости в котле снижается, что делает ненужным обогрев верхней части поверхности нагрева. Выключение этой части осуществляется прекращением подачи теплоносителя в соответствующую секцию змеевика. [c.191]

    Зависимость (9-24, б) очень важна для расчета химических процессов. Пз нее следует, что концентрацип определенного компонента в двух соприкасающихся фазах даже при равновесии не бывают одинаковыми, а только сближаются и в некоторых пределах (см. ниже) пропорциональны (т. е. концентрация в одной фазе пропорциональна концентрации в другой фазе). Это делает возможными различные процессы разделения, а также часто используется в химической промышленности для создания условий переноса компонентов между отдельными фазами. Зависимость (9-24, б) была экспериментально установлена Раулем и Генри в начале XIX века. Теоретические ее обоснования разработаны значительно позже в ходе развития физической химии. [c.134]

    Все методы анализа фракционного состава порошков можио разбить на две группы методы седиментационно-го анализа без разделения порошков иа отдельные фракции, методы анализа с отбором фракций по ходу анализа. [c.19]

    Весьма интересной является зависимость характеристик разделения от концентрации поверхностно-активных веществ (рис. У1-22, в). Здесь наиболее ярко можно проследить взаимосвязь между структурой раствора и характеристиками разделения. На кривых селективность — концентрация ПАВ имеется ярко выраженный минимум. Причем такие минимумы характерны только для крупнопористых мембран — ультрафильтров. Более плотные обратноосмотические мембраны обладают высокой селективностью даже по отношению к мономеру. На крупнопористых мембранах увеличение концентрации ПАВ от О до ККМ приводит к снижению селективности, так как структурирования раствора в этой области не наблюдается. Минимум на кривой селективности соответствует ККМ данного ПАВ. Выше ККМ раствор начинает переходить в мицеллярное состояние и селективность задержания ПАВ резко возрастает. Выход кривых селективности и проницаемости на максимальные постоянные значения свидетельствует о том, что структура раствора стабилизировалась. Таким образом, ход этих кривых связан с изменением в структуре самих коллоидных растворов. [c.322]

    Разделение углеводородов в газофракционирующей секции может проводиться по двум вариантам. Первый вариант предусматривает последовательность выделения компонентов в порядке уменьшения их летучести. В этом случае все тяжелые углеводороды проходят последовательно этановую, пропановую и бутано-вые колонны. По второму варианту из сырья выделяют широкую гамму углеводородов с последующим фракционированием их в отдельных колоннах. В этом случае первой по ходу сырья является бутановая колонна, сверху которой отбирают этан, пропан и бутан, подвергающиеся дальнейшему разделению в про-пановой колонне на этан-пропановую фракцию и бутан, а остаток бутановой колонны поступает в следующую (пентановую) колонну для разделения на пентановую фракцию (головной погон) и гек-сановую фракцию (нижний остаток). Чистота пропана, бутанов и гексана, получаемых по второй схеме, достигает 98%. Пентано-вая фракция в изопентановой колонне фракционируется на н-пен-тан и изопентан (рис. 1). [c.19]


    ОПС всех примесей (кроме ацетилена) целесообразно принять равным 0,5 ПДС и установить следующий регламент работы блоков разделения О—0,5 ПДС — нормальная работа с отбором проб через 4 ч из конденсатора, последнего по ходу жидкого кислорода 0,5- 1,0 НДС — учащение анализов (через 2 ч), увеличение проточности, переключение воздухозабора и т. п. > 1,0 ПДС — остановка, слив жидкости, отогрев. [c.147]

    Такое временное разделение элементарных процессов приводит к тому, что в ходе первой фазы процесса воспламенения образование Н2О энергетически балансируется диссоциацией На и О2. Если пренебречь обрывом и рассмотреть основные стадии разветвления и продолжения цепи, то можно показать, что в каждом цикле появление одной молекулы Н2О связано с генерацией одного атома [c.314]

    Качественный аспект проблемы подбора катализаторов. Теоретические предпосылки качественного этапа прогнозирования каталитической активности в значительной мере опираются на классификацию механизмов гетерогенного катализа. Самая общая классификация предполагает разделение механизмов гетерогеннокаталитических реакций на локальные и коллективные. Локальный механизм проявляется, когда взаимодействие субстрата с катализатором в ходе каталитического акта обусловлено индивидуальными свойствами атома поверхности твердого тела, играющего роль активного центра, при этом на гетерогенный катализ полностью переносятся представления гомогенного катализа. Если протекание реакции определяется свойствами катализатора как твердого тела, то говорят, что проявляется коллективный механизм [2]. [c.58]

    В случае четырехкамерной печи каталитического риформинга и гидроочистки топочные газы отводятся в общий канал, представляющий собой узкую длинную шахту, где для механической прочности и придания потокам параллельности движения сделаны перемычки по всей выс(зте канала. Из дымового канала продукты сгорания топлива поступают в конвекционную камеру, разделенную на три хода промежуточными стенами, которые соединены между собой кирпичными перемычками. [c.15]

    Диаграммы, приведенные на рис. 12,13, отражают ход анализа экстракция кислотой (основания), экстракция щелочью (фенолы), ректификация нейтрального остатка на фракции, хроматографическое разделение на группы углеводородов и нейтральные кислородные соединения (ИКС) с последующим кольцевым анализом углеводородов (А — ароматическое кольцо, N — нафтеновое кольцо, цифра указывает число колец данного типа). [c.169]

    В ходе преобразований может быть выявлено, что все технологические процессы необходимы для получения заданного ассортимента целевых продуктов. В этом случае структурная оптимизация НПЗ невозможна и оптимум целевой функции может быть достигнут только за счет перераспределения потоков, если в структуре содержатся фиктивные процессы их разделения. Отсутствие процессов разделения потоков приводит к задаче целочисленного дискретного программирования, а наличие — к задаче частично целочисленного программирования с булевыми переменными. [c.214]

    Процесс экстракции состоит в действии на разделяемую твердую или жидкую смесь такого растворителя, который способен растворять не все, а лишь определенные составные части смеси, после чего раствор отводится от нерастворен-ной части смеси, чем и достигается разделение. Ход процесса экстракции зависит от целого ряда условий, из которых наиболее важными являются следующие 1) выбор растворителя, [c.356]

    Когда такой процесс разделения ведется в колонке, заполненной адсорбентом, в один конец которой непрерывно вводится разделяемая смесь, процесс адсорбции идет послойно, т. е. по ходу движения смеси будут располагаться компоненты с все более низкой адсорбируемостью. Из колонки будет выходить поток, содержащий только менее адсорбируемые компоненты, до тех нор, пока пся поверхность адсорбента не занолпится компопентом, имеющим более высокую степень адсорбируемости. Если после этого продолжить пропускание разделяемой смеси, произойдет проскок адсорбируемого компонента, т. о. он появится в потоке, выходяп ем из колонки. [c.258]

    Разделение экстракцией более удобно, чем методом осаждения, так как при этом отпадает необходимость отделения осадков. Кроме того, при экстракции очень мала поверхность раздела между несмешнвающимися жидкостями и не проис ходит кристаллизация, а следовательно, нет и соосаждения, которое весьма затрудняет разделение. Достоинством метода является также быстрота и то, что стряхивание исследуемого раствора с подходящим растворителем дает возможность извлекать вещество из большого объема водной фазы в малый — органического растворителя, т. е. концентрировать его. [c.129]

    Для расчета обычных случаев бинарной ректификации едва ли можно рекомендовать такую методику, ибо существующие строгие методы расчета не столь уж трудоемки, чтобы оправдать применение заведомо приближенной процедуры. Однако разработка этого аналитического приближенного метода расчета имеет другой смысл. Получаемые в ходе его разработки важные понятия псевдоконцентраций и псевдоотносительных летучестей могут быть обобщены и использованы для облегчения расчета значительно более трудного случая — ректификация многокомпонентной смеси. Сама же по себе приведенная ниже аналитическая методика расчета бинарной ректификации может привлекаться лишь в случаях, когда требуется быстро получить приблизительное представление о числе тарелок, необходимом для данного разделения, или когда в колонне очень много тарелок и осуществляется весьма четкое разделение близкокинящих веществ. [c.192]

    Анализ принципиальных схем азеотропной ректификации удобно и наглядно проводить в системе трилинейных координат при этом наиболее просто изображается ход ректификационных линий (ведут от наименее к наиболее летучему продукту разделения тройной смеси) для режима полного орошения. Такая ломаная линия, соединяющая фигуративные точки наименее и наиболее летучег компонента тройной системы, состоит из [c.329]

    Из рассмотрения режима полного орошения можно заключить, что каждая такая конода отвечает одной теоретической тарелке. Проходящая через концы этих конод огибающая кривая достаточно близко характеризует ход ректификации, и поэтому в последующем изложении именно с помощью таких кривых будет описываться ход разделения бинарных гомоазеотропов в присутствии разделяющего агента. [c.331]

    В ходе ректификации в качестве дистиллята колонны будет отбираться низкокипящий азеотроп Е , кривые же разделения будут выходить из фигуративной точки наименее летучего в данной области диаграммы компонента и, огибая участок треугольной диаграммы, примыкающий к компоненту промежуточной летучести, сходиться в фигуративной точке Е - Так, если точка кипения компонента а выше, чем компонента Ь, то характер кривых ректификации системы Ь, представляющей смесь азеотропа Еу и разделительного агента Ъ, представится линиями, показанными на рис. VII.5. Если же точка кипения а ниже, чем у разделительного агента, то кривые ректификации, согласно рис. VII.6, выходят из фигуративной точки Ъ, огибают участок, примыкающий к вершине а, и сходятся в фигуративной точке Е наиболее низкокиняшего азеотропа. Легко заметить, что независимо оттого, выше точка кипения разделительного агента Ь или ниже, чем -у компонента а, кривые ректификации весьма схожи. Следует только иметь в виду, что при добавлении Ъ к Еу необходимо строго придерживаться условий материального баланса, тогда фигуративная точка Ь их суммы попадает на прямую баланса а а- [c.331]

    Пусть дана система двух частично растворимых друг в друге веществ второго, неэвтектического типа, разделенная на два жидких слоя, находящихся в равновесии с их общим паром, при точке кипения под заданным постоянным внешним давлением. Из рассмотрения изобарных кривых кипения и конденсации этой системы, представленных на фиг. 16, можно заключить, что пока в системе присутствуют оба жидких слоя, как температура кипения, так и составы обоих жидких слоев и выделяемого пара останутся в ходе испарения неизменными. Единственно, по мере перегонки исходной двухфазной жидкости будет изменяться ее совокупный состав а, передвигаясь на горизонтальном участке АВ существования трехфазной равновесной системы по направлению к точке В до полного исчезновения фазы А состава ха, которое наступит в момент, когда совокупный состав жидкой фазы сравняется с составом лв слоя В. [c.53]

    Из тех же соображений, что и в случае постепенного и однократного испарения гетерогенной жидкой системы, разделенной на два слоя, ее ввод в ректификационную колонну в двухфазном жидком или трехфазном парожидком состоянии лишен всякого практического смысла, ибо при неизменных температурах и составах фаз ни о каком их обогащении тем или иным компонентом не может быть и речи. Поэтому напрашивается решение разделить в отстойнике оба слоя и их ректификацию проводить отдельно в различных колонных аппаратах, ибо каждый слой, перегоняемый отдельно, характеризуется уже двумя степенями свободы. В ходе его испарения меняются и температура, и составы фаз, и поэтому вполне возможен процесс обогащения фаз в ходе их контактирования, сопровождаемого теплообменом и взаимодиффузией. Это напрашивающееся решениедля рассматриваемого случая является к тому же и достаточным и дает установку в вопросе выбора технологической схемы оформления процесса. [c.70]

    Разделение подобного рода системы можно произвести, если подобрать такой третий компонент, в результате прибавления которого к исходной системе он образует азеотроп с метанолом, кипящий при более низкой температуре, чем 54,6° С. Таким веществом является хлористый метилен, кипящий при 41,5° С, не образующий азеотропа с ацетоном, но зато с метиловым алкоголем образующий постоянно кипящую смесь с точкой кипения 39,2° С. На фиг. 50 показан ход перегонки для расссматриваемо-го случая. [c.148]

    Но имеющий распространения и пефтсзаводской практике процесс периодической ректификации применяется главным образом для разделения сравнительно небольших количеств сырья, ректификация которых в непрерывно действующей колонне оказывается экономически нецелесообразной. Над перегонным кубом устанавливается укрепляющая колонна, с верха которой отводится дистиллят. Хотя Б ходе процесса составы остаточной кубовой жидкости и паров, поступающих в колонну, иепрерывно утяжеляются, тем не менее вполне возможно в течение длитель- [c.221]

    Обычно в начале расчета задаются состав и состояние С1.гр1.я, считаются известными относительные летучест комнонентов и назначаются рабочее флегмовое число и в1, ход одного нз целе1 1,1х продуктов разделения. [c.376]

    II возникает ряд научных проблем, которые необходимо решать уже сегодня, таких, как создание эффективных, стабильных, долгоживущих катализаторов и методов их контакта с нефтяным сырьем подбор высокоселективных и стабильных раство11ителей для разделения углеводородных фракций по типам структур и ]ш молекулярной массе повышение селективности катализаторов до уровня четко управляемого перераспределения водорода в перерабатываемом сьсрье пер( ход в производстве смазочных масел массовой выработки на целенаправ генный синтез высокостабильных углеводородных систем с оптимальными параметрами по вязкости. [c.355]

    Разделение опытных работ на этапы продиктовано также требованием эффективного использования ресурсов в ходе исследований. На первом этапе производится предварительный отбор, тре-буюпцгй сравнительно небольшого масштаба опытных установок после того как первые отсеивающие испытания дадут положительный результат п определятся основные направления опытной проработки, исследования переходят в следующую стадию, в которой используются более крупные людские и денежные ресурсы. [c.93]

    Расчет начинают с определениеDg для соответствующих рабочих условий по упомянутым выше или другим известным данным. По уравнению (VHI,35) вычисляют N и считают площадь тарелки разделенной на N частей, или секций, последовательно расположенных по ходу жидкости. Каждая такая секция представляет собой абсорбер идеального смешения по жидкости. Состав жидкости в ближайшей к выходу секции отвечает известному составу жидкости, покидающей тарелку. Состав входящего газа также известен. Расчет скорости абсорбции и состава газа на выходе из секции проводят методом после- [c.200]

    При необходимости высокой степени разделения компонентов смеси процесс ведут в одноступенчатой многомодульной установке с рециркуляцией (рис. 6.3). По этой схеме исходным потоком каждой стадии, кроме первой, является смесь ретанта с предыдущего (по ходу установки) аппарата и пермеата — последующего. В качестве целевых продуктов получают ретант последней и пермеат первой стадии. Неизбежная плата за высокую степень разделения, достигаемую в этой установке, — повышенные капитальные и эксплуатационные затраты. [c.197]

    Изыскивая возможности увеличения глубины отбора дистил-лятных фракций из мазута и улучшения их разделения в вакуумной колонне, на одном из заводов реконструировали трубчатые змеевики и изменили режим работы нагревательной печи. На основе исследований БашНИИ НП и опыта эксплуатации вакуумного блока АВТ в двухскатной печи смонтировали комбинированные змеевики из труб, диаметр которых увеличивается в направлении движения потока. В начальной зоне нагрева сырья установили трубы условным диаметром 150 мм, а далее по ходу в зоне испарения мазута смонтировали сначала трубы диаметром 200 мм и затем 250 мм. Это позволило существенно снизить давление в зоне испарения жидкости и повысить долю паровой фазы и соответственно увеличить выход целевых продуктов. [c.267]

    На рис. 75 графически изображен ход разгонки двухкомпонентной смеси в системе координат температура паров — количество дистиллята. При хорошем и удовлетворительном разделении (кривые / и 2) в начале перегонки температура паров соответствует температуре кипения легколетучего компонента А и держится постоянной. В приемнике собирается / фракция — чистый компонент А. По мере уменьщения его содержания в перегонной колбе температура паров начинает повышаться. В зависимости от необходимой чистоты разделения и разницы между температурами кипения компонентов I фракцию собирают в интервале 2—5 °С. Далее заменяют приемник и собирают промежуточную фракцию II, представляющую собой смесь двух компонентов. После того, как температура паров приблизится к температуре кипения компонента Б, начинают собирать III фракцию. При использовании более эффективного дефлегматора объем промежуточной фракции уменьшается. Ее либо подвергают повторной разгонке, либо отбрасывают. [c.144]

    Есть сообщение об отстаивании комплекса-сырца от дизельного топлива в пульсац-ионном аппарате [88]. В исследованном интервале интенсивности (частота 150—200 мин , амплитуда 10— 20 мин) пульсация значительно увеличивает скорость расслоения суспензии, при этом изменение параметров пульсации существенно не влияет на ход процесса. Влияние пульсации объясняется, по-видимому, разрушением гелеобразной структуры взвеси комплекса в спирте при механическом (гидравлическом) воздействии на него. Динамика расслоения суспензии, оцененная по количеству ароматических углеводородов, остающихся в парафине после разложения отстоявшегося комплекса, представлена на рис. 104. Из этих данных следует, что при пульсационном расслоении четкость разделения, эквивалентная четкости в промышленном отстойнике, достигается за 15— 20 мин вместо 1,5 ч без пульсации. [c.247]

    Благодаря высокой чувствительности детекторов, применяемых в современных жидкостных хроматографах, для анализа достаточно нескольких микролитров вещества. Разделение осуществляется в короткие промежутки времени за счет использования колонок малых размеров и высоких скоростей элюирования (давления на входе в колонку до нескольких сотен атмосфер). При применении некоторых типов детекторов (спектрофотометрических, транспортных и др.) можно управлять ходом разделения путем регулируемого изменения температуры, давления или состава элюента в ходе анализа. Программируемое изменение состава элюента (градиентное элюирование) плодотворно реализовано, например, в уже отмечавшейся методике ЛЭАХ [123, 124] (см. рис. 1.1). На применении транспортного детектора и смеси трех растворителей в качестве подвижной фазы основан способ [c.33]

    Равенства (VII, б) представляют собой систему уравнений динамического программирования, соответствующую рассматриваемой задаче синтеза.. Очевидно, что формально входящие в систему уравнений (VII, 6) величины Fi,j равны нулю. Система уравнений (VII, 6) описывает многостадийный выбор оптимальной схемы системы разделения исходной Л -компонентной смеси и имеет по сравнению с другими задачами динамического программирования ряд специфических особенностей. Под отдельной стадией в данном случае следует понимать не элемент, подсистему или стадию ХТС, а стадию информационного процесса выбора. При этом на некоторой стадии осу ществляется по существу выбор оптимальных схем системы разделения всех /-компонентных упорядоченных смесей, входящих в рассматриваемую УУ-ком.понентную смесь. Параметром управления на каждой стадии является номер тяжелого ключевого компонента К в первой колонне по ходу разделения рассматриваемой /-компонентной смеои. При выборе на каждой [c.297]


Смотреть страницы где упоминается термин Разделение нос,ходящее: [c.64]    [c.93]    [c.407]    [c.187]    [c.275]    [c.280]    [c.155]    [c.263]    [c.183]   
Хроматография на бумаге (1962) -- [ c.126 , c.127 , c.141 ]




ПОИСК







© 2025 chem21.info Реклама на сайте