Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Одновременное определение азота и фосфора

    Определение углерода и водорода основано на сожжении полимера до двуокиси углерода и воды и последующем определении этих соединений. Одновременно с углеродом и водородом в одной навеске полимера можно определить хлор, бром, иод или серу, фосфор или бор. Для определения азота обычно применяют два метода газометрический (метод Дюма) и определение в виде аммиака (метод Кьельдаля). Для определения галогенов и серы широко используют колбовый метод, так называемый метод Шенигера. Все указанные методы подробно описаны в литературе [1, 2]. [c.52]


    Одновременное определение азота и фосфора [c.205]

    Было показано , что хлор в присутствии фтора также количественно удерживается окисью магния и может быть определен одновременно с фтором титрованием аликвотных частей раствора, полученного в результате пирогидролиза. Азот, фосфор, кремний, бор, сера и бром не мешают определению. [c.275]

    Для определения процента использования питательных ве-ш,еств из удобрений необходимы анализ растений на содержание в них азота, фосфора и калия и анализ почвы для выявления запасов усвояемых элементов пищи. И те и другие определения желательно проводить в несколько сроков, чтобы получить мате . риалы по динамике поступления элементов питания в растение и содержания их в почве. Одновременно учитывается влажность почвы. [c.658]

    Данная книга представляет собой одновременно монографию и руководство для лабораторных работников, интересующихся определением неметаллов. В ней изложены фотометрические методы определения азота, бора, кремния, фосфора, мышьяка, кислорода, серы, селена, теллура, фтора, хлора, брома и иода. [c.9]

    Водоудерживающая способность листьев характеризует состояние плазменных коллоидов клетки. Чем выше эта способность у растения, тем выше и его устойчивость к неблагоприятным условиям среды. В наших опытах водоудерживающая способность листьев была в 3 раза выше у растений, получивших минеральные удобрения, причем, азот больше, чем фосфор, как при достаточном, так и недостаточном увлажнении почвы, повышал водоудерживающую способность растений. Так, в фазу колошения (1957 г.) при увлажнении почвы 35% от п. в. через 6 часов завядания содержалось воды в листьях контрольных растений 10,6, удобренных азотом 47,0, фосфором 30,5 и МРК — 55% от ее первоначального сб-держания. В опытах 1962 года в условиях засушника, водоудерживающая способность листьев через 6 часов завядания составила по N — 58%, по Р—>52%, по NP —61,7 /о при контроле —46,8%, а через 24 часа завядания соответственно — 23,6, 15,1, 29,3 и 15,6"/о. Повышенная водоудерживающая способность листьв по азотным вариантам обусловлена, по-видимому, большим содержанием коллоидов и белкового азота в них. Количество белкового азота в листьях при одновременном определении с водоудерживающей способностью равнялось у контрольных растений 1,6, удобренных Р—1,58 и N— 1,840/0. [c.28]

    Ухудшение водоемов при эвтрофировании может обусловить значительные экономические потери. Это привело к развитию методов контроля, чтобы замедлить, остановить указанный процесс или даже сделать его обратимым (см. главу 3). Эти методы основаны на правильном использовании информации по балансу биогенных веществ водоема, что достигается двумя путями. Нагрузка водоема специфичными биогенными веществами может быть снижена путем контроля источников фосфора и азота на водосборах. В принципе это легко сделать с точечными источниками, такими, как места сброса сточных вод, но рассредоточенные источники, например стоки с сельскохозяйственных угодий, намного труднее для контроля, хотя и здесь можно достичь определенных результатов. Там, где поступление биогенных веществ практически невозможно контролировать, альтернативой является удаление биогенных веществ из воды, сбрасываемой в водоем, хотя это только временная мера. Во многих программах по восстановлению озер оба метода предлагается использовать одновременно, что может приводить к быстрому улучшению качества воды. С помощью этих методов можно эффективно контролировать искусственное эвтрофирование большинства водоемов. [c.25]


    Для одновременного определения всех элементо1В целесообразно проводить анализ в атмосфере азота. При определении углерода, фосфора и галогенов хорошие результаты получают также в воздушной среде. Азот и серу можно определять в ат- [c.248]

    Получение связанного азота из атмосферного воздуха в плазменных реакторах интенсивно исследуется как у нас в стране, так и за рубежом, особенно в последние 10 лет. Пока плазменный метод по всем показателям уступает аммиачному, в первую очередь по расходу электроэнергии, который примерно в 7—10 раз выше. Однако разница становится менее ощутимой, если плазменный процесс совмещают с разложением фосфорсодержащего сырья в атмосфере воздуха с одновременной фиксацией азота. Дальнейшая переработка дает возможность получать из пятиокиси фосфора и окислов азота смесь фосфорной и азотной кислот для производства комплексных удобрений. Открываются определенные перспективы и для утилизации других компонентов фосфорсодержащего сырья. При диссоциации фосфорсодержащего сырья в плазме происходит практически полное его обесфторивание и выделение четырехфтористого кремния. Кроме того, отпадает необходимость в переработке фосфогипса, как это имеет место при сернокислотной переработке фосфатов, поскольку в плазмохимическом процессе образуется окись кальция. Варьируя температуру плазмохимического процесса, можно сначала обесфторить фосфорсодержащее сырье, а затем при более высокой температуре (около 3500 К) превращать его в пятиокись фосфора или получить в присутствии добавок (например, двуокиси кремния и углерода) элементарный фосфор, силикат и карбид кальция и окись углерода. [c.176]

    Опытами Шаррера показана эффективность нового сложного удобрения, называемого Вихтель . В состав удобрения, кроме азота, фосфора и калия, введены микроэлементы марганец, бор и медь. Автор отмечает, что применение этого сложного удобрения повышает урожай моркови, котопли, цветной капусты и зерновых культур. Однако некоторые зарубежные исследователи считают экономически наиболее целесообразным применение удобрительных смесей с микроэлементами, при-готовленными пе ред внесением, а не использование сложных удобрений, полученных заводским путем (22, 25). Таким образом, имеющиеся в литературе данные свидетельствуют о возможности совместного применения удобрений и химических средств защиты растений. Однако для приготовления смесей и сложных удобрений с добавками пестицидов необходимо углубленное изучение свойств и взаимного влияния составляющих их компонентов. При одновременном внесении удобрений и пестицидов в виде смесей или сложных удобрений требуется, чтобы необходимасть их применения, а также способы внесения совпадали. В практике сельского хозяйства удобрения чаще всего вносят в почву на определенную глубину, а пестициды обычно применяют для об работки семян и растений путем опыливания и опрыскивания их или вносят в почву до посева и посадки, В связи с этим стоит задача определить наиболее удачные сочетания удобрений и пестицидов, учитывая способы внесения того или другого компонента, с тем чтобы предотвратить возможность ослабления его действия. Следует заметить, что правильное решение этого вопроса во многом зависит от физико-химического соответствия комплексного препарата биологическим объектам, для которых он предназначен (12). [c.154]

    Как уже упоминалось во введении, даже в настоящее время для выполнения элементного анализа преимущественно используются химические методы. Они в основном подходят для определения отдельных элементов и для одновременного определения углерода и водорода. В прошлом предпринимались попытки разработать методы одновременного определения нескольких (4—5) элементов из одной навески. Эти методы были очень сложны и использовались только в том случае, когда имелось очен1> малое количество вещества. В большинстве таких методов определение важных гетероэлементов (галогены, сера, фосфор) проводилось одновременно с определением углерода и водорода. Метод одновременного определения трех наиболее важных элементов— углерода, водорода и азота из одной навески считается сложным для применения в автоматических анализаторах. Последние, главным образом, предназначаются для серийных анализов с использованием газохроматографического или иных способов разделения. Другие методы, основанные на химическом разделении, не представляют интереса, поскольку в настоящее время редко бывает необходимым полный анализ вещества или одно-Ременное определение нескольких гетероэлементов. [c.297]

    Первый заключается в использовании нефтеусваивающих культур микроорганизмов, находящихся непосредственно в самом торфе, который предварительно активируют введением минеральных добавок, содержащих азот и фосфор, и инкубируют в мезофильном режиме в течение 3...7 суток [150]. Активированный таким образом торф обеспечивает одновременно сорбцию нефтяных углеводородов и является источником и носителем нефтеусваивающих культур микроорганизмов, активность которых при создании определенных условий и при попадании в загрязненную среду резко возрастает. В связи с этим отпадает необходимость специального выделения и выращивания культуры микроорганизмов и нанесения их на пористый носитель. [c.198]


    При определении пестицидов в соответствии с методами Управления по охране окружающей среды в настоящее время используются газохроматографические детекторы, селективные по отношению к галогенам, сере, азоту и фосфору. Однако электроноза-хватный детектор и детектор по электропроводности не позволяют дифференцировать Р, С1 и Вг. В пламеннофотометрическом детекторе может наблюдаться гашение. Сигнал этого детектора нелинеен. Пестициды содержат различные гетероатомы, поэтому их было бы целесообразно анализировать методом ГХ с атомно-эмиссионным детектором и микроволновой гелиевой плазмой. Используя этот метод, можно получить полные элементные профили и/или детектировать индивидуальные элементы в молекулах. Иа рис. 8-34 и 8-35 представлены специфические хроматограммы элементов, входящих в состав диазинона и арохлора соответственно. Одновременно с этим определяют С, 8 и М, применяя для продувки кислород и водород. [c.129]

    Предлагаемый метод анализа [1] основан на окислении навески вещества смесью концентрированной серной и хромовой кислот в атмосфере кислорода при 150° С в приборе, показанном на рисунке. Возможные продукты неполного сгорания дожигают в трубке над окисью хрома, нанесенной на пемзу. Углерод определяют в виде двуокиси углерода весовым путем. Хлор пли бром улавливают раствором гидразингидрата, нейтрализованного уксусной кислотой до pH 6, и определяют аргентометрически. Разумеется, прямое определение водорода исключается, что в ряде случаев не является решающим, по зато одновременно с углеродом и галогенами из одной навески можно определять многие элементы, остающиеся в реакционной смеси, например, азот, бор, фосфор, кремний, металлы и др. [c.3]

    Маем 1868 г. датирована книга Вюрца История химических доктрин от Лавуазье до наших дней . В этой книге по существу теории строения нет, есть только теория атомности. Схема Вюрца такова в 1855 г. он (Вюрц) высказался о трехатомности азота и фосфора. Это послужило началом теории атомности элементов. В 1858 г. эта теория сделала определенный прогресс [18, стр.70]. Далее Вюрц излагает содержание высказываний Кекуле о четырехатомности углерода и сцеплеиип углеродных атомов между собой. В примечании указывается, что этп важные идеи были высказаны одновременно и независимо от Кекуле также и Купером. Отмечается успех, которым обязана органическая хилшя развитию теории атомности. Была раскрыта конституция органических соединений, было объяснено большое число случаев изомерии, была создана одновременно [c.284]

    Определение углерода в органических соединениях [874, 875] проводят на установке, описанной выше (стр. 112) при изложении методов определения водорода [874]. Собственно говоря, углерод определяют одновременно с водородом. Углекислый газ, полученный в результате разложения пробы, уносится из кулонометрической ячейки азотом и поступает в стеклянную трубку (диаметр 7—8 мм-, длина 200 мм), заполненную порошком безводной и нагретой до 205—225° С гидроокиси лития. При этом СОг образует ЫгСОз и НгО. Пары воды уносятся из трубки током азота во вторую кулонометрическую ячейку, где поглощаются пленкой пятиокиси фосфора. Дальнейший анализ ничем не отличается от описанного для случая водорода. Абсолютная ошибка определения углерода в перечисленных выше органических веществах составляет 0,3%. [c.115]

    При исследовании действия гиббереллина на рост растений обнаружено, что гиббереллин, в противоположность ИУК, гораздо сильнее стимулирует рост целых растений, чем отрезков различных органов (Brian, Hemming, 1958 Гукова, Фаустов, 1963 Гамбург, 19646). Считалось, что реакция отрезков на гиббереллин ослаблялась потому, что они были обеднены эндогенным ауксином, без которого гиббереллин не действует. Однако можно предположить, что гиббереллин не действует на те ткани, где рост растяжением не сопровождается одновременным накоплением белка и нуклеиновых кислот (отрезки органов), но оказывает свое действие там, где эти процессы протекают одновременно (ткани целого растения), т. е. предполагается, что действие гиббереллина на растяжение клеток как-то связано с синтезом белка и нуклеиновых кислот. В нашей работе (Гамбург, Мальцева, Кобыльский, 1965) не было обнаружено увеличения количества нуклеиновых кислот в третьем междоузлии проростков низкорослого гороха, которое реагировало на гиббереллин только растяжением клеток. Незначительным было также увеличение количества нуклеиновых кислот в стеблях этиолированных проростков гороха, где гиббереллин усиливал только растяжение клеток. Все это противоречит высказанному выше предположению. Следует учесть, что в проведенной нами работе определения проводились через 5 дней после обработки, когда уже были возможны вторичные изменения. Поэтому мы провели предварительную работу, в которой определили, как меняется содержание белка, фосфора нуклеиновых кислот и скорость роста третьего междоузлия через 1, 2, 3 и 5 дней после обработки гиббереллином (Гамбург, Маркович, неопубликованные данные). Оказалось, что стимуляция роста происходит только в течение первого дня после обработки, а затем скорость роста была почти такой же, как и в контроле. Именно в первый день наблюдалось увеличение содержания белкового азота и фосфора нуклеиновых кислот в междоузлии под влиянием гиббереллина. Затем эта разница сглаживалась. Таким образом, фактор, стимулирующий рост растяжением, одновременно вызывал увеличение количества белка и нуклеиновых кислот. Это может служить подтверждением необходимости синтеза белка и нуклеиновых кислот для растяжения клеток целого растения. Таким же подтверждением могут быть данные Шэннона с сотрудниками (Shannon et а., 1964) о том, что 2,4-Д, стимулируя рост участка мезокотиля на целом растении, одновременно увеличивает содержание белка и нуклеиновых кислот в этом участке. Однако если 2,4-Д действовала на этот же, но изолированный участок, то стимуляция роста не сопровождалась усилением синтеза белка и нуклеиновых кислот. Вероятно, рост растяжением целого растения и отрезков имеет разный механизм. Чтобы решить этот вопрос, необходимо располагать большим числом экспериментальных данных. [c.53]


Смотреть страницы где упоминается термин Одновременное определение азота и фосфора: [c.242]    [c.204]    [c.551]    [c.158]    [c.206]    [c.206]    [c.329]    [c.305]   
Смотреть главы в:

Методы органической химии Том 2 Издание 2 -> Одновременное определение азота и фосфора

Методы органической химии Том 2 Методы анализа Издание 4 -> Одновременное определение азота и фосфора




ПОИСК





Смотрите так же термины и статьи:

Азот, определение

Азот, определение азота

Одновременное определение углерода, водорода и фосфора. Одновременное определение углерода, водорода и кремния. . Газометрическое определение азота (метод Дюма)

Определение в фосфорите



© 2024 chem21.info Реклама на сайте