Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение отдельных элементов

    Спектрофотометры. Использование спектрофотометров с призмой или дифракционной решеткой обеспечивает высокую моно-хроматизацию потока излучения. Это открывает большие возможности для повышения чувствительности и для увеличения избирательности методов определения отдельных элементов, а также для исследования состояния вещества в растворе и процессов комплексообразования. Например, только спектрофотометр пригоден для изучеиия спектров поглощения редкоземельных элементов, которые имеют большое число узких максимумов поглощения. Нерегистрирующие однолучевые спектрофотометры СФ-4, СФ-4А, СФ-5, СФД-2 имеют общую оптическую схему, представленную на [c.473]


    Методы определения отдельных элементов  [c.402]

    Атомы элементов, образующих молекулу органического вещества, обычно соединены ковалентными связями, и поэтому орга- нические соединения не способны диссоциировать в водных растворах с образованием соответствующих ионов. Между тем большая часть качественных реакций, используемых в аналитической химии для определения отдельных элементов, представляет собой ионные реакции. Поэтому первой задачей анализа органического вещества является разрушение его молекулы при этом образующие ее атомы переходят в минеральные соединения, легко открываемые обычными реакциями аналитической химии. Наиболее обычными способами разрушения органических веществ являют-ся 1) окисление и 2) сплавление со щелочными металлами—натрием или калием. [c.211]

    Хорошие результаты получаются и с помощью некоторых электрохимических методов. Но их применение еще находится в стадии разработки, например внедрение в практику ионселективных электродов. Иногда на эти методы оказывают существенное влияние условия определения и матричный эффект. Часто селективность их недостаточна для определения отдельных элементов при совместном присутствии. В постояннотоковой полярографии предел обнаружения составляет 1 мкг/см , селективность мала в переменнотоковой полярографии при том же пределе обнаружения селективность лучше в квадратноволновой полярографии, импульсной полярографии и дифференциальной импульсной полярографии предел обнаружения [c.415]

    Аналитическая химия тесно связана с различными областями науки и производства. Химический анализ применяют для контроля качества сырья, полуфабрикатов и готовой продукции. Каждая область науки и производства ставит перед аналитической химией свои специфические задачи. Так, в медицине большое значение имеет качественное обнаружение и количественное определение отдельных элементов, которые входят в состав тканей живых организмов и обусловливают их нормальную физиологическую деятельность. Урожайность сельскохозяйственных культур зависит в значительной степени от содержания в поч вах и в удобрениях многих микроэлементов. В связи с этим возникла необходимость разработать методы определения в удобрениях микроколичеств ряда элементов (марганца, бора, железа, молибдена). [c.15]

    Анализ для определения отдельных элементов, составляющих соединения органической массы угля, т. е. количество углерода, водорода, кислорода, азота, серы и т. д., осуществляют методами, подобными методам, применяемым в органической химии. Некоторые из перечисленных элементов представляют больший или меньший интерес в отношении того, что касается процесса коксования и конечного качества получаемого кокса. Знание содержания серы представляется важным ввиду ее влияния на качество произведенного кокса, используемого в доменной печи. Содержание фосфора должно быть ограниченным при производстве определенных сортов электрометаллургических коксов. Напротив, азот, присутствующий в угле, не оказывает особого влияния, так же как и хлор, на производство кокса. Тем не менее опишем вкратце порядок нормального анализа для каждого из этих элементов для того, чтобы составить более полное представление об исследовании углей с помощью методов их элементного анализа. [c.48]


    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Экстракционные методы широко применяются в аналитической химии. Несмотря на развитие целого ряда инструментальных методов, отличающихся избирательностью, не всегда удается непосредственное определение отдельных элементов в объектах и сложных [c.78]

    ОПРЕДЕЛЕНИЕ ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ [c.129]

    Существует и другой вариант, а именно инструментальный активационный анализ, в котором избирательность определения отдельных элементов достигается на основе ядерно-физических свойств элементов и образующихся радиоизотопов. Преимущество этого варианта заключается в том, что анализ можно провести без разрушения пробы, что имеет, например, значение при исследовании археологических материалов и в ряде других случаев. Такой анализ отличается от радиохимического метода большой экспрессностью. В этом методе измеряют посредством специальной аппаратуры излучение данного элемента на фоне излучения других радиоизотопов, присутствующих в пробе. С этой целью варьируют условия облучения — тип и энергию излучения — и используют особенности схем распада определяемых изотопов — вид и энергию излучения, период полураспада и др. Достоинством метода является возможность полной [c.793]

    Опубликовано более 40 работ по определению примесей в алюминии высокой чистоты активационным методом. Анализируемый образец и эталоны облучают в ядерном реакторе потоком нейтронов 10 —нейтрон см сек и измеряют активности образующихся при этом радиоактивных изотопов с помощью сцинтилляционного у-спектрометра. Время облучения (в зависимости от определяемых примесей) от нескольких часов до нескольких недель. Большей частью предварительно разделяют примеси на группы различными методами осаждением на носителях, экстракцией, ионообменной хроматографией. Известен метод определения примесей с использованием у-спектрометрии и без химического разделения селективность метода при определении отдельных элементов достигается выбором соответствующего времени облучения и охлаждения [5951. Предложен метод активационного анализа без разрушения образца с применением Ое (Ь1)-детекторов у-излучения, обладающих высокой разрешающей способностью [1093]. [c.228]

    Чувствительность определения отдельных элементов активационным методом 10 % Т1, 8-10 % О , 10" % Ре, 81, 5-10" % С, 2т, V, 10-0—10- % Си, Ag, Аи, 2п, Сс1, 8с, Оа, 8п, ТЬ, и, Р, Аз, 8Ь, Мп, Со. Относительная ошибка 10—50%. [c.228]

    К достоинствам метода РАА относятся высокая чувствительность возможность определения отдельных элементов в ряде случаев без разрушения образца отсутствие высоких требований к чистоте химических реактивов при работе с короткоживущими изотопами анализ может быть проведен в течение нескольких минут. К недостаткам метода следует отнести возможность деструкции или даже разрушения образца при облучении, так как для достижения высокой чувствительности необходимо иметь достаточно мощные потоки ядерных излучений. Кроме того, при работе с сильно активирующимися материалами приходится прибегать к специальной защитной технике. [c.165]

    К числу задач, которые наиболее часто приходится разрешать химику, относится определение состава веществ, т. е. определение отдельных элементов, ионов или молекул, из которых состоит исследуемое вещество или смесь веществ. [c.11]

    Химические методы часто сочетаются с физическими методами анализа, особенно при определении различного рода примесей и следов в различных объектах. Нередко анализ вначале выполняется химическим путем, а затем определение отдельных элементов или их соединений заканчивается физическими методами. [c.13]

    Полярография может быть использована для исследования состава полимерных молекул, в том числе для определения отдельных элементов и функциональных групп, входящих в молекулу высокомолекулярного соединения, а также для изучения некоторых реакций, протекающих с участием макромолекул [И, с. 278]. Терентьева с сотр. [И, с. 283] показали возможность идентификации около 20 элементов с помощью полярографического метода. Методика полярографического элементного анализа состоит в направленном частичном окислении веществ [И, с. 278, 301], либо в предварительной полной минерализации исходного соединения с последующим полярографическим исследованием образующихся продуктов. [c.202]


    Способы разложения материалов растворением в кислотах, в смесях кислот, щелочным или кислым, окислительным или восстановительным сплавлением, а также спеканием приведены подробно при рассмотрении методов определения отдельных элементов. [c.49]

    По критерию Кайзера максимальная чувствительность определения соответствует для А1 и Fe — 1-10 , для Са 1-10 , для Со, Ni и Ti 8 10 , для Сг 2-10 7, для Mg — 5-10 б, для Мп 8-10 и для Zn 4-10" %. Средняя квадратичная ошибка определения отдельных элементов 20—30% [267, стр. 44]. [c.189]

    Степень разделения зон элементов зависит от нескольких факторов, но в основном определяется выбранной смесью растворителей и предварительной обработкой бумаги. Считается, что в отсутствие образования хвостов , сильного расширения зон или других осложняющих явлений пятна полностью отделяются друг от друга, если ARf элементов > 0,1—0,2 для сравнительно коротких хроматограмм (20—25 см), но при удлинении пути подвижного фронта до 30- 0 см и более разделяться могут и пятна элементов с ARf = = 0,03—0,05. Это достигается обычно при помощи нисходящего или восходяще-нисходящего способа развития хроматограмм. Многие растворители удовлетворяют этим требованиям, так что разделение полной суммы, за исключением некоторых сочетаний (Ей—Gd, Dy — Y — Но), не вызывает затруднений. Далее хроматограммы идентифицируют, зоны отдельных элементов вырезают, затем сжигают или экстрагируют кислотами. Точность определения отдельных элементов при помощи колориметрического метода обычно 5—10% [279,369,9181 при комбинировании же с методами выделения рзэ из образцов точность определения уменьшается с понижением содержания элементов в сумме рзэ и при содержаниях 10% метод может стать уже полуколичественным [113]. В некоторых случаях можно учесть возможные потери рзэ при их выделении и очистке и ввести определенную поправку в конечный результат [86]. [c.116]

    Минералы группы силикатов. Силикатные минералы, содержащие рзэ, вскрывают различными способами, но основное внимание при этом уделяется возможно более полному отделению кремния. В результате в растворе оказывается ряд ионов металлов, которые отделяют от рзэ и Th известными приемами осаждения оксалатов и гидроокисей [43, 58, 63, 180, 198, 370, 1156] или хроматографическим способом [1881]. Отделение от S несколько специфично и достигается главным образом при помощи хроматографических способов [1174, 20721. Для отделения Th предложены способы фракционного осаждения гидроокиси с гексамином [11561 или соединения с п-аминосалициловой кислотой [1801. Далее количество рзэ и У можно определить либо весовым [370], либо колориметрическим путем с арсеназо [58], а состав смеси — спектрографическим способом [761]. Для определения отдельных элементов в присутствии всех остальных предложены различные способы пламеннофотометрический —для определения La [1166], колориметрический [198, 3701 и объемный 1156]—для определения Се, колориметрический — для определения Рг [27] и спектрофотометрический — для определения Рг и Nd [63, 312]. [c.225]

    Титриметрические методы анализа — это наиболее распространенные в фармацевтическом анализе методы, отличающиеся малой трудоемкостью и достаточно высокой точностью. Количественную оценку с их помощью осуществляют путем определения отдельных элементов или функциональных групп, содержащихся в молекуле лекарственного вещества. Многие органические вещества не могут быть определены титрованием в водных растворах в силу йх низкой растворимости или слабости проявляемых кислотно-основных свойств. Задача их определения была успешно разрешена заменой воды на органический (неводный) растворитель.  [c.140]

    В конце раздела помещены наиболее распространенные и рекомендуемые методики определения отдельных элементов в реальных образцах. [c.277]

    Условия и некоторые особенности определения отдельных элементов атомно-абсорбционным методом в пламени [c.902]

    Условия и некоторые особенности определения отдельных элементов с применением электротермических атомизаторов [c.917]

    Аналогично по тем же критериям можно оценивать селективные и групповые фотометрические реагенты, но их практическое применение для определения отдельных элементов возможно только в отсутствие мешающих компонентов либо в специальных условиях, при которых мешающее влияние сопутствующих элементов проявляется в незначительной степени. [c.288]

    Чувствительность радиоактивационных методов 10 —10 %. Эта относительно невысокая чувствительность вызвана большой активацией элементов основы и необходимостью проведения большого числа операций по очистке, что приводит к малым выходам определяемых элементов. Кроме перечисленных методов имеется обширная литература по определению отдельных элементов в галлии (табл. 28), его арсениде, фосфиде и других объектах (табл. 29). [c.208]

    ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ОТДЕЛЬНЫХ ЭЛЕМЕНТОВ [c.104]

    Подробно условия фотометрического определения отдельных ионов и их селективность рассмотрены ниже, при определении отдельных элементов, [c.107]

    А. К. Бабкой А. Т. Пилипенко. Колориметрический анализ. Госхимиздат, 1951, (408 стр,). Монография предназначена ь качестве руководства для работников заводских лабораторий, а также студентов. В первой части рассматриваются условия тере-ведения определяемого компонента в окрашенное соединение, влияние pH, ко1щентра-ции реактива п др. факторов. Во второй части описаны визуальные и фотоэлектрические методы измерения интенсивности окраски. Третья часть посвящена изложению ме тодов определения отдельных элементов в различных материалах. [c.487]

    Дж. Нидерль, В. Нидерль. Микрометоды количественного органического анализа. Госхимиздат, 1949, (276 стр.). В книге описаиы основные микроаналитические методы количественного определения отдельных элементов и функциональных групп в органических веществах и методы определения молекулярного веса. Значительное внимание уделено описанию техники работы. [c.492]

    Кроме нейтронно-активационных методов, для определения Sb используются также фотоно-активационные ( -активационные) методы [355, 356, 375, 865, 1263]. В работе [375] обсуждены возможности Y-активационного определения отдельных элементов при помощи бетатрона с внутрикамерным облучением предел обнаружения Sb составляет 1 мкг. 7-Активационный анализ для определения Sb имеет значительно меньшее значение, чем нейтрон-но-активационный. Наиболее перспективными областями его применения является массовый анализ проб на отдельные элементы со сравнительно высоким их содержанием и материалов с относительно простым составом. Инструментальный 7-активационный анализ используется для определения Sb в воздухе [865], в сурьмяно-циркониевом [356] и сурьмяно-фосфатном [355] ионообмен-никах. [c.76]

    Для определения отдельных элементов-примесей в арсениде галлия используются фотометрические (табл. 13) и иолярографи-ческие (табл. - 14) методы. [c.197]

    Активационный анализ образцов Th можно проводить с высокой чувствительностью для многих рзэ, за исключением Gd [1515]. После соответствующего облучения 100 лг образца на потоке 3 -10 ией-трон1сек-см и разделения Th и рзэ с носителем путем выделения гидроокисей или путем тиосульфатного осаждения Th, редкоземельная группа подлежит -спектрометрическому анализу с определением отдельных элементов по кривым распада их изотопов. [c.252]

    В таблице суммированы данные, которые полезно знать при выборе условий определения отдельных элементов методом атомной абсорбции в пламени обозначения и названия химических элементов относительные атомные массы элементов (А) атомные числа элементов (г) энергии диссоциации монооксидов — наиболее устойчивых химических соединений в пламени (Ло, эВ) энергии ионизации атомов ( /, эВ) длины волн резонансньк линий (нм), применяемых для измерения атомного поглощения положение энергетических уровней (нижнего и верхнего, см" ), соответствующих данному переходу рекомендуемая спектральная ширина щелей спектрофотометра с учетом возможных спектральных помех и оптимального соотношения сигнал/фон оценочное значение величины характеристической концентрации для конкретного типа пламени и возможные спектральные помехи при измерениях атомного поглощения. [c.917]


Смотреть страницы где упоминается термин Определение отдельных элементов: [c.149]    [c.420]    [c.2]    [c.204]    [c.150]    [c.192]    [c.116]   
Смотреть главы в:

Методы абсорбционной спектроскопии в аналитической химии -> Определение отдельных элементов

Натрий -> Определение отдельных элементов

аналитическая химия ртути -> Определение отдельных элементов

Гетероциклические азотосодержащие азосоединения -> Определение отдельных элементов

Синтез органических препаратов из малых количеств веществ -> Определение отдельных элементов

Эмиссионный спектральный анализ нефтепродуктов -> Определение отдельных элементов

Методы абсорбционной спектроскопии в аналитической химии -> Определение отдельных элементов

Гетероциклические азотосодержащие азосоединения -> Определение отдельных элементов




ПОИСК





Смотрите так же термины и статьи:

Элемент, определение



© 2025 chem21.info Реклама на сайте