Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Периодическая система химических элементов и электронное строение атомов

    Какое положение занимает химический элемент олово-в периодической системе элементов Д. И. Менделеева Какое электронное строение имеет атом олова Какие степени окисления характерны для олова  [c.85]

    С позиций строения атома объяснимо положение водорода в периодической системе. Атом водорода имеет один электрон, который может быть отдан атомам других элементов. Поскольку это свойство проявляют атомы всех элементов, начинающих периоды,— Ыа, К, НЬ, s, Рг, то и водород должен стоять в главной подгруппе I группы. С другой стороны, поскольку атом водорода обладает способностью, подобно атомам галогенов, присоединять один электрон (Н+е =Н ), т. е. проявляет неметаллические свойства, он должен находиться в главной подгруппе VII группы. Такая двойственность в химическом поведении водорода является причиной того, что его помещают в двух подгруппах. При этом в одной из подгрупп символ элемента заключают в скобки. [c.54]


    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    С развитием электронной теории строения атомов стало ясно, что химические свойства элементов являются функцией электронной стрз ктуры атомов. Отсюда следует, что в качестве объективного критерия, однозначно определяющего положение элемента в Периодической системе, целесообразно выбрать именно электронное строение атома. Поэтому в развитии Периодического закона выделяют три этапа. На первом этапе в качестве аргумента, определяющего свойства элементов, была выбрана атомная масса и закон был сформулирован Д.И.Менделеевым следующим образом "Свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от их атомного веса". На втором этапе было выяснено значение атомного номера, который, как оказалось, определяет заряд ядра атома. Открытие изотопов и изобаров показало, что истинным аргументом, определяющим природу элемента, является именно заряд ядра, а не атомная масса. Действительно, атомы с одинаковой атомной массой — изобары (например, Ат, °К, — принадлежат разным элементам, в то вре- [c.226]


    В настоящее время особенности атома углерода объясняются его строением и положением в периодической системе элементов Д. И. Менделеева. Атом углерода имеет четыре валентных электрона и обладает одинаковой способностью как к отдаче, так и к присоединению их. В органических соединениях химическая связь ковалентная. Атомы углерода образуют с другими атомами, а также друг с другом общие электронные пары. В этом случае каждый атом углерода на внешнем уровне будет иметь восемь электронов (октет), четыре из которых одновременно принадлежат другим атомам. [c.307]

    Используемое ныне в научной литературе выражение "превращение химических элементов" некорректно. Оно подменяет конкретный объект превращения (атом), неопределенным понятием (химический эле.мент). Недостатком формулировки закона радиоактивных смещений (правильнее превращений ) является то, что она не выделяет подвиды атомов как объект превращения. Она, по-прежнему, "вяжет" их к смещениям в Периодической системе. Возникает принципиальное несоответствие между законом и наглядной его иллюстрацией. Периодическая система химических элементов имеет в основе своей структуры устройство электронной оболочки атомов. Строение ядра имеет здесь лишь опосредованное значение через равенство Ерц. = 1 . Закон же радиоактивных превращений касается исключительно ядерных преобразований и индифферентен (в рамках данных рассмотрений ) к структуре электронной оболочки. И в этом аспекте рассмотрения система атомов идентична системе ядер. Мы как бы на время, игнорируем присутствие электронной оболочки. [c.102]

    Периодическая система химических элементов тесно связана не только с превращением атомов, но и с их строением. В свете квантовой волновой теории модель атома потеряла свою наглядность, поскольку в соответствии с этой теорией электрон размазан по всему атому. Это как бы не имеющее резких границ вращающееся веретено или другая фигура, называемая в общем виде электронным облаком, которое обладает магнитным моментом. [c.48]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Многие химические и физические процессы могут быть объяснены с помощью простых моделей строения атома, предложенных Резерфордом, Бором и другими учеными. Каждая из таких моделей, чем-то отличаясь, тем не менее предполагает, что каждый атом состоит из трех видов субатомных частиц протонов, нейтронов и электронов. Это далеко не полная картина, но для наших целей этого пока достаточно. Протоны и нейтроны образуют ядро атомов. Ядро намного тяжелее электронов. В ядре сосредоточена почти вся масса атома, но ядро занимает лишь ничтожную часть объема. Электроны движутся (часто говорят вращаются ) вблизи ядра по определенным законам. Ядро может быть описано всего лишь двумя числами — порядковым номером атома в периодической системе элементов (его называют атомным номером и обозначают символом ) и массовым числом символ А). [c.15]

    Таким образом, при переходе от любого элемента Периодической системы Д. И. Менделеева к следующему заряд ядра увеличивается на единицу, также на единицу увеличивается и число электронов. Величина заряда атомного ядра любого элемента 2 есть не что иное, как его атомный, или порядковый номер в Периодической системе. Величина 2 также равна числу электронов в атоме данного элемента и определяет его химические свойства. Очевидно, что с увеличением числа Z строение атома соответствующего элемента усложняется. Так атом урана — одного из самых тяжелых элементов — имеет 2—92, и, следовательно, содержит 92 электрона, вращающихся вокруг ядра. Можно полагать, что такое большое число двигающихся частиц должно располагаться внутри атома некоторым упорядоченным образом. Каков же этот порядок Можно ли его найти, пользуясь законами Ньютона и небесной механики, или этот микромир подчиняется своим особым законам Для ответа на подобные вопросы следует познакомиться с данными, характеризующими движение микрочастиц. [c.230]

    Электроны находятся в оболочке атома, и их распределение в ней непосредственно определяет химические и физические свойства элементов. Строение оболочки обусловливает также образование и природу химической связи. Очевидно, что распределение электронов в оболочке зависит от их количества, а так как последнее связано с числом положительных зарядов ядра атома, т. е. протонов, то ядро тоже влияет на свойства атома. Порядковый номер атома в периодической системе совпадает с числом электронов в оболочке незаряженного атома, которые компенсируют заряд ядра если число электронов меньше или больше числа зарядов ядра, то образуется заряженный атом, атом-ион. [c.13]


    Хром находится в VI группе периодической системы. В отличие от элементов подгруппы кислорода он является металлом, что обусловлено строением его атома. Атом хрома во внешнем слое содержит только один электрон, поэтому не присоединяет электронов, отдавать же он мол<ет их от двух до шести (один внешний и пять с недостроенного соседнего слоя с 13 электронами). Таким образом в химических соединениях хром проявляет степень окисленности, изменяющуюся от +2 до - -6. Наибольшее значение имеют производные хрома со степенью окисленности -f-3 и +6. [c.53]

    Впоследствии было показано (Г. Си бор г. Актинидные элементы. М., Атом-издат, 1960), что строение периодической системы элементов сложнее. Химические свойства элементов закономерно меняются с изменением электронной оболочки атома, и хотя уран имеет шести валентные соединения, он принадлежит не к VI группе, а к группе тяжелых редкоземельных элементов, аналогов группы элементов от лантана до лютеция. [c.8]

    Атомные ядра являются чрезвычайно прочными образованиями, не изменяющимися при любых химических реакциях. Атом в целом является электрически нейтральной системой, вследствие чего общее число протонов в ядре равно общему числу электронов в электронной оболочке. Это число Z является характеристическим для каждого атома, так как определяет его принадлежность к тому или иному химическому элементу и есть не что иное, как порядковый номер элемента в периодической системе Менделеева. Помимо числа Z, определяющего электрический заряд ядра, атомы характеризуются еще массовым числом Ма, равным числу нуклонов в ядре. Атомы, характеризующиеся одним и тем же числом Z, но разными числами Ма, называются изотопными. Такие атомы имеют идентичные по своему строению и составу электронные оболочки и в силу этого почти неотличимы по своим химическим свойствам. Встречающиеся в природе химические элементы большей частью состоят из разных изотопных атомов, ввиду чего атомные массы элементов не целочисленные. [c.192]

    Как известно, атом представляет систему, построенную из положительно заряженного ядра, состоящего в свою очередь из протонов и нейтронов, и электронов, движущихся вокруг этого ядра. Число протонов определяет заряд ядра 2 и общее число электронов в атоме, а сумма протонов и нейтронов ядра с учетом некоторого небольшого дефекта массы, имеющего место при образовании ядер, определяет атомный вес. Поскольку изменение строения и физико-химических свойств элементов происходит в результате периодического изменения строения внешних электронных оболочек с возрастанием заряда ядра, необходимо кратко рассмотреть квантово-механические представления о строении электронных оболочек атомов, лежащие в основе периодической системы элементов Менделеева. [c.13]

    Попять физический смысл валентности помогло учение о строении атомов и химической связл. Как уже отмечалось, электроны, которые участвуют в образовании химических связей между атомами, называются валентными. Зто электроны, наиболее слабо связанные с ядром. У химических элементов общее число валентных электронов в атоме, как правило, равно номеру группы периодической системы элементов Д. И. Менделеева. Так, атом серы (элемент VI группы) содержит всего 16 электронов, нз них валентных 6. К валентным относятся прежде всего электроны внешних незавершенных уровней. Однако валентными могут быть и электроны второго снаружи уровня (например, у -элементов), а также электроны третьего снаружи уровня (например, у /-элементов). [c.58]

    Электронное строение и типы связей элементов периодической системы - ключ к пониманию Сфуктуры и свойств простых и сложных веществ, образованных эти.ми элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана фуппа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа ато.мов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической сфуктуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симмефия орбиталей атомов данного конкретного элемента полностью определяют число, длину, ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в пространстве, т е. кристаллическую структуру, основные физико-химические свойства элемента. [c.30]

    Геосферы — обо.лочки земной коры, более или менео однородные по своему составу и образовавшиеся в сравнительно одинаковой физико-химической обстановке. Поэтому все явления, происходящие в геосферах, рассматриваются на основе учения о термодинамич. равновесии, правила фаз и других законов физич. химии с тем или иным приближением — в зависимости от сложности явлений, происходящих в той или иной геосфере, как, напр., в биосфере. Основными параметрами. этих природных равновесий в геосферах являются давление, темп-ра, число фаз, их химич. состав и др. 13 пределах внешних геосфер между геосферами с разной интенсивностью непрерывно идет обмен веществ, миграция химических элементов. Распределение химич. эле-мептов по оболочкам Земли имеет закономерный характер и зависит от физико-химич, свойств самих элементов и образуемых ими соединений, в первую очередь, — от строения внешних. электронных оболочек атомов и ионов, т. с. от ноложеиии элемента в периодической системе Менделеева. Геохымическ1 .я к.гис-сиф1и аци,ч элементов может быть иллюстрирована кривой ато.мных объемов — ркс. 2. [c.423]

    За прошедшие сто лет были исправлены атомные веса ряда элементов, было открыто более 40 новых элементов и среди них 101-й — менделеевий Md. Все они нашли свое место в периодической системе элементов Менделеева, которая приобрела огромное значение в химии и во всех сопредельных областях знания. С каждым годом она углублялась, непрерывно увеличивая и расширяя свое внутреннее содержание. Периодическая система явилась как бы призмой, через которую можно было рассмотреть в атомном разрезе весь мир. Исключительное значение в понимании периодического закона элементов принадлежит теории строения атомов и прежде всего строению их электронных оболочек. Оказалось, что химические свойства элементов определяются внетнними электронными оболочками, строение которых закономерно периодически возвращается. Характером заполнения оболочек у разных атомов можно было объяснить, например, эффект так называемого лантаноидного сн атия, наблюдаемого не только у группы редких земель, но и у группы актиноидов. [c.205]


Смотреть страницы где упоминается термин Периодическая система химических элементов и электронное строение атомов: [c.486]    [c.76]    [c.52]    [c.62]    [c.391]    [c.54]   
Смотреть главы в:

Химия Пособие-репетитор для поступающих в вузы Изд2 -> Периодическая система химических элементов и электронное строение атомов

Химия пособие-репетитор для поступающих в ВУЗы -> Периодическая система химических элементов и электронное строение атомов




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Периодическая система

Периодическая система и электронное строение атома

Периодическая система элементо

Периодическая система элементов

Строение химическое

Электрон в атомах

Электронное строение

Электронное строение атомов

Элемент периодическая

Элемент химический

Элементов электронное строение

Элементы химические электронное строение

электронами электронное строение

электронная система



© 2025 chem21.info Реклама на сайте