Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элементы химические электронное строение

    Благодаря тому, что атомы и ионы аналогичных элементов побочных подгрупп пятого и шестого периодов имеют не только сходное электронное строение, но и практически совпадающие размеры,— а их химических свойствах наблюдается гораздо более близкое сходство, чем в случае элементов четвертого и пятого периодов. Так, цирконий по своим свойствам значительно ближе к гафнию, чем к титану, ниобий сходен с танталом в большей степени, чем с ванадием и т. д. [c.642]


    Десять -элементов, — начиная со скандия и кончая цинком,— принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов, по сравнению с предшествующими (5- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не во внешнем ( = 4), а во втором снаружи ( — 3) электронном слое. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешнего электронного слоя их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) [c.95]

    К а-элементам относятся водород, гелий, щелочные и щелочноземельные элементы, а также бериллий и магний. Водород и гелий существенно отличаются по своим физическим и химическим свойствам друг от друга и от остальных з-элементов. Это связано с резким отличием электронного строения их атомов от электронного строения атомов остальных -элементов. Свойства водорода удобнее обсуждать при изучении химии р-элементов УПА-подгруппы, а гелия [c.379]

    ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА. КВАНТОВО-МЕХАНИЧЕСКАЯ ТЕОРИЯ ЭЛЕКТРОННОГО СТРОЕНИЯ АТОМА [c.48]

    Периодическая система химических элементов и электронное строение атомов [c.79]

    Химические свойства элементов и их соединений являются периодической функцией заряда ядра атома. С ростом заряда ядра, т.е. порядкового номера элемента, периодически меняются строение двух внешних электронных оболочек, радиусы атомов, радиусы и заряды ионов. Эти факторы определяют валентность элемента, его окислительно-восстановительную способность и кислотно-основную характеристику. Количество электронов на двух оболочках (предпоследний и наружный слои) приведено в табл. 4, радиусы атомов — в табл. 5. [c.12]

    В предыдущих главах было показано, что энергии ионизации, сродство к электрону и электроотрицательности атомов всех элементов удается объяснить на основе рассмотрения орбитальной электронной структуры атомов. Теперь попытаемся связать электронное строение атомов с химическими свойствами элементов и их соединений. Начнем с обсуждения (и составления уравнений) реакций, в которых одни реагенты теряют, а другие приобретают электроны (окислительно-восстановительные реакции). За- [c.415]


    Из 110 известных к настоящему времени элементов только 22 относятся к неметаллам, больщинство же элементов — металлы. Металлы отличаются от неметаллов физическими, химическими, механическими свойствами. Особенности этих отличий обусловлены электронным строением простых веществ, вытекающим из числа и типа валентных электронов атомов элементов. [c.318]

    Прежде всего обращает на себя внимание периодичность в изменении электронных конфигураций атомов элементов в зависимости от порядкового номера. Это указывает, что в основе систематики химических элементов лежит электронное строение атомов. Каждый период начинается элементом с новым значением п. В связи с этим номер периода совпадает с главным квантовым числом внешних электронов атома. Сам период можно характеризовать как совокупность элементов, начинающуюся с пз и завершающуюся гs rtp элементами, т, е. как совокупность их от щелочных металлов до благородных газов. Исключение составляет первый период, содержащий только водород и гелий. Число элементов в периодах соответственно равно 2, 8, 8, 18, 18, 32, Элементы подгрупп имеют сходные внешние электронные конфигурации, что обусловливает общность их химических свойств. К главной подгруппе относятся элементы, для атомов которых п [c.65]

    В настоящее время считается бесспорным, что в основе систематики химических элементов, выраженной Д. И. Менделеевым в виде системы и сформулированной в виде периодического закона, лежит электронное строение атомов. Химические свойства элементов определяются электронным строением атомов, а электронное строение является функцией заряда ядра. Поскольку масса атома в основном сосредоточена в ядре, то формулировка периодического закона его творцом н была связана с атомной массой. [c.80]

    Итак, характеристики электрохимических процессов, как и другие физико-химические свойства, вполне определенно отражают различия внутренних электронных оболочек и подтверждают целесообразность сдвигов элементов по электронному строению, выполненных в главе I. [c.122]

    Знание электронного строения атомов позволяет подойти к интерпретации химических свойств элементов. Не следует пытаться запоминать все приводимые ниже факты, нужно лишь выделять из описательного материала те свойства, которые подчиняются регулярным периодическим закономерностям и могут быть объяснены электронным строением атомов. Не каждое химическое свойство становится абсолютно ясным, если известно электронное строение атома данного элемента, но многие наблюдаемые факты приобретают на этой основе ясный смысл, и именно этот смысл следует искать в массе химических данных. [c.432]

    Однако между металлами главных и побочных подгрупп есть ц существенные различия. Они также связаны с особенностями электронного строения переходных элементов, а именно с тем, что во втором снаружи электронном слое их атомов имеется неполностью занятый электронами -подуровень. Для образования химических связей атомы переходных элементов могут использовать не только внешний электронный слой (как это имеет место у элементов главных подгрупп), но также -электроны и свободные -орбитали предшествующего слоя. Поэтому для переходных элементов значительно более характерна переменная валентность, чем для металлов главных подгрупп. Возможность создания химических связей с участием -электронов и свободных -орбиталей обусловливает и ярко выраженную способность переходных элементов к образованию устойчивых комплексных соединений, С этим же связана, как указывалось на стр. 598, характерная окраска многих соединений переходных элементов, тогда как соединения металлов главных подгрупп в большинстве случаев бесцветны. [c.646]

    Эти пособия позволяют учащимся в диалоге с компьютером обсуждать первоначальные химические понятия, важнейшие классы неорганических соединений, периодическую систему химических элементов и строение атома, общие закономерности химических реакций и пр. При изучении периодической системы химических элементов и строения атомов можно рекомендовать компьютерную программу Ядро атома , Электронное строение атомов химических элементов , Энергия ионизации атомов . [c.4]

    Физические и химические свойства простых и сложных веш,еств, образуемых различными элементами, определяются особенностями строения электронных оболочек, а также зарядом и массой ядер атомов этих элементов. Тем не менее исторически разделение элементов на два больших класса — металлы и неметаллы — возникло задолго до того, как было обнаружено сложное строение атома и создана периодическая система элементов. В основу такого разделения были положены довольно отчетливые различия в некоторых физических свойствах простых веш,еств, образуемых различными элементами. [c.106]


    Десять / -элементов, начиная со скандия и кончая цинком, принадлежат к переходным элементам. Особенность построения электронных оболочек этих элементов по сравнению с предшествующими (з- и р-элементами) заключается в том, что при переходе к каждому последующему -элементу новый электрон появляется не на внешней (п = 4), а на второй снаружи (тг = 3) электронной оболочке. У атомов всех переходных элементов внешняя электронная оболочка образована двумя з-электронами. Существуют -элементы (например, хром, молибден, элементы подгруппы меди), у атомов которых во внешнем электронном слое имеется только один 5-электрон. Причины этих отклонений от типичного порядка заполнения электронных энергетических подуровней рассмотрены в конце раздела. В связи с этим важно отметить, что химические свойства элементов в первую очередь определяются структурой внешней электронной оболочки их атомов и лишь в меньшей степени зависят от строения предшествующих (внутренних) электронных оболочек. Поэтому химические свойства -элементов с увеличением атомного номера изменяются не так резко, как свойства в- и р-элементов. Все -элементы принадлежат к металлам, тогда как заполнение внешнего р-подуровня приводит к переходу от металла к типичному неметаллу [c.68]

    Место элемента в периодической системе, положение элемента в периоде и группе определяется зарядом (2) и структурой ядра, спецификой электронного строения, совокупностью индивидуальных и общих химических и физико-химических свойств атомов элементов. [c.76]

    В подгруппу переходных элементов входят -элементы, расположенные в центральной части больших периодов (IV, V, VI). Вследствие этого сходные по электронному строению и физико-химическим свойствам элементы расположены здесь в горизонтальных рядах, [c.150]

    Периодическая система элементов относится к наиболее выдающимся открытиям в химии. Важность такой систематизации химических элементов несомненна, однако временами мы склонны забывать трудности, с которыми сталкивались те, кто первыми работали в этой области. В свете современных сведений связь между электронным строением атомов и свойствами элементов очевидна, вместе с тем необходимо учесть, что во времена начала развития периодической системы количество, а очень часто и качество экспериментальных данных, на которых могла бы основываться классификация элементов, были недостаточны. [c.79]

    Контактное (Ферми) взаимодействие состоит в переносе спиновой плотности неспаренных электронов парамагнитного иона на данное магнитное ядро по цепи химических связен. Поэтому контактное взаимодействие зависит прежде всего от электронного строения лигандов и характера связи металл — лиганд. Контактное взаимодействие прямо пропорционально константе сверхтонкого взаимодействия Л/ неспаренного электрона с магнитным ядром и обратно пропорционально абсолютной температуре Т. Константа /4 быстро затухает по цепи а-связей в сопряженных системах знак Л, в цепи альтернирует. Контактное взаимодействие более характерно для элементов IV периода, а у лантаноидов, как правило, оно играет второстепенную роль, особенно при их взаимодействии с протонами. [c.107]

    Элементы, в атомах которых заполняется в последнюю очередь /-подуровень, называются /-элементами. Они располагаются или в семействе лантаноидов (шестой период), или в семействе акти-. ноидов (седьмой период). Оценка электронного строения и важнейших свойств пока неизвестных элементов седьмого периода показывает, что они должны быть аналогами соответствующих элементов шестого периода. Для элементов восьмого периода (состоящего согласно теории из 50 элементов) предполагается сложный характер изменения химических свойств по мере роста порядкового номера, который связан с нарушением последовательности заполнения электронных подуровней в атомах. [c.27]

    Что такое изотопы Одинаково ли электронное строение изотопов одного и того же элемента Одинаковы ли химические свойства изотопов одного и того же элемента  [c.379]

    Заряд атомного ядра по величине совпадает с порядковым номером элемента в периодической системе число электронов равно заряду ядра. Атом в целом нейтрален, т. е. сумма отрицательных зарядов компенсирована положительным зарядом ядра. Размеры атомного ядра (диаметр 10 — 10 м) весьма малы по сравнению с размерами атома (диаметр 10 м), но почти вся его масса сосредоточена в ядре ( 99,97 %). А так как масса является мерой энергии, то в ядре сосредоточена почти вся энергия атома. Плотность ядерного вещества огромна ( 10 кг/м ). Заряд ядра определяет не только общее число электронов, но и электронное строение атомов, а следовательно, их физико-химические свойства. [c.90]

    Элементы основной подгруппы УП группы имеют следующее электронное строение. У атома фтора семь электронов внешнего слоя могут разместиться по четырем ячейкам единственным способом, при котором атом может присоединять еще только один электрон. У фтора при химических реакциях не происходит разъединения спаренных электронов  [c.107]

    Попытки классифицировать элементы предпринимались издавна и завершились гениальным открытием Д. М. Менделеева, который в 1869 г. создал периодическую систему элементов. По закону периодичности—фундаментальному закону природы — химические и физические свойства веществ, образованных элементами, связаны прежде всего с электронными конфигурациями и величиной заряда ядра соответствующих элементов. Кроме общей классификации элементов, основанной на строении электронных конфигураций и закономерностях периодической системы, существует давнее традиционное разделение их на металлы и неметаллы. [c.317]

    Описаше электронных характеристик молекулы предусматривает анализ структуры ее волновой функции. Последняя определяет значения различных физико-химических величин, для которых возможно сопротивление экспериментальных и теоретических значений, позволяющее установить качество найденных волновых функций. Это важно для дальнейщего теоретического изучения таких характеристик системы, о которых можно судить по имеющимся экспериментальным данным лищь косвенным путем. Прежде всего это относится к химическим реакциям, протекающим в тех или иных условиях (в газовой фазе, растворах, на границе раздела двух сред и т.д.). В подобных задачах изучение электронного строения отдельных подсистем молекул является первым этапом. В каждом конкретном случае прежде всего оценивают, какой квантово-химический метод окажется в условиях данного эксперимента достаточно информативным. Методы квантовой химии подразделяют на две основные группы неэмпирические и полуэмпирические. Имея в виду изучение начал квантовой химии, в данной главе рассматриваются лищь неэмпирические методы и близкий к ним метод псевдопотенциала. Причиной тому являются следующие соображения. В полу-эмпирических методах матрицу оператора энергии упрощают приравниванием к нулю предположительно малых матричных элементов, общее число которых достаточно большое. Возникающая отсюда ошибка может быть частично скомпенсирована введением в оставшиеся матричные элементы феноменологических параметров, т.е. полуэмпирические методы представляют собой метод эффективного оператора энергии, в качестве которого выступает матрица энергии. В остальном в полуэмпирических методах повторяется логика неэмпирических, см. [2], [23], [27], [38], [41]. [c.184]

    У халькофильных элементов 18-электронное строение наружных оболочек (правда, с некоторым исключением, например 8 и ее аналоги) в положении Теплоты образования их окисей ниже теплот образования РеО. Они располагаются на поднимающихся ветвях кривой атомных объемов и т. п. Наконец, сферофильные элементы — ионы переходного типа, имеющие в наружной оболочке 8—18 электронов. Атомные объемы их находятся на минимальных ветвях кривой. Они встречаются в самородном состоянии, так как у них низкий потенциал выделения металла. Около 60% всех химических элементов относится к литофильным элементам и около 30% к халькофильным. Земная кора, сложенная из тетраэдров [8104 и [АЮ4], практически не содержит сидерофильной фазы. [c.211]

    Однако звездное вещество, прежде чем превратиться в гидросферу и литосферу, прошло длительную историю, дифференциацию, в которой важную роль играли химические свойства элементов, определяемые электронным строением атомов. Именно поэтому твердая земная кора и гидросфера по составу сильно отличаются от звезд, и в частности от Солнца. Если Солнце, как и другие звезды, состоит из водорода и гелия (с незначительной примесью других элементов), то Земля утеряла почти весь свой космический гелп1 г, который, будучи легким и инерт- [c.14]

    Электронное строение атома фтора ls 2s p В соединениях степень окисления фтора, равна —1, т.е. все соединения фтора, в том числе кислородные, являются фторидами. Существование F+ в соединениях исключено значение первой энергии ионизации If (1735 кДж/моль) меньше лншь /ие и /n - Это означает, что если получить катион F+ (химическим путем это неосуществимо, так как фтор наиболее электроотрицательный элемент), то при столкновении с любой частицей, кроме атомов Не или Ne, он превратится в атом F. [c.468]

    На химической проекции Системы атомов всс подвиды вида атомов проецируются в точку, что адекватно усреднению их свойств. Это графический образ химического элемента на наглядной модели. В таком "двуличии вида атомов (по генетике — изопротонного ряда) видится глубокий смысл противоречивого развития материи. Хотя мы говорим, что переход от одного уровня строения материи к другому осуществляется скачком, но понимаем, что полного разрыва между ними нет и быть не может. Вид атомов, выступая как элемент физический, представляет предшествующий уровень материи, а выступая как элемент химический — выходит на следую-1ций, более высокий уровень организации материи — химический, Выводит его на этот уровень электронная оболочка атомов. В последующем изложении материала эти две ипостаси вида атомов будут просматриваться четко. [c.142]

    Подобная близость свойств объясняется тем, что в высшей степени окисления атом элемента, находящегося в третьем периоде (в главной подгруппе) и атомы элементов побочной подгруппы приобретают сходное электронное строение. Например, атом хрома имеет электронную конфигурацию 1з Когда хром находится в степени окисления 4-6 (например, в оксиде СгОз), шесть электронов его атома (пять М- и один 4б-электрон) вместе с валентными электронами соседних атомов (в случае СгОз — атомов кислорода) образуют общие электронные пары, осуществляющие химические связи. Остальные электроны, непосредственно не участвующие в образовании связей, имеют конфигурацию отвечающую электронной структуре благородного газа. Аналогично у атома серы, находящегося в степени окисления -Ьб (например, в триокси-де серы ЗОз), шесть электронов участвуют в образовании ковалентных связей, а конфигурация остальных (1з 28 р ) также соответствует электронной структуре благородного газа. Короче говоря, сходство в свойствах соединений элементов побочной подгруппы и элемента третьего периода той же группы обусловлено тем, что их ионы, отвечающие высшим степеням окисления, являются электронными анапогами. Это легко видеть из данных табл. 21.1. [c.497]

    ВАЛЕНТНОСТЬ (лат. Уа1епз — I моющий силу) — способность атомов химических элементов образовывать химические связи с атомами других элементов. С точки зрения электронного строения атомов В. — это способность атомов или атомных группировок отдавать или присоединять в каждом отдельном случае определенное количество электронов с образованием эквивалентного количества химических связей. В соединениях с ионной связью В. определяется числом присоединенных (отрицательная В.) или отданных (положительная В.) электронов. В соединениях с ковалентной связью В. атомов определяется числом электронов, принимающих участие в образовании общих электронных пар. В. элемента зависит от строения внешних электронных оболочек атомов. [c.51]

    В учебнике рассмотрены теоретические вопросы химии и химия элементов. Элементы и их соед П1ення изучаются по группам периодической системы Д. И. Менделеева — первоначально 5- и р-, затем с1- и /-элементы. Принят единый план изложения электронное строение, общая характеристика элементов, химия элементов, при-ме 1ение. Химия элементов в соответствии с программой излагается на основе современных представлений о строении вещества, периодической системы, законов химии, теории химических процессов, структурных и термодинамических характеристик. Интегральной основой изложения всего курса является периодическая система Д. И, Менделеева в современном освещении. [c.3]

    Т1 является первым р-элементом после лантаноидов, его электронное строение... 4/ 5s 5p 5d 6sЮs. На свойствах соединений Т1 может сказываться участие в химической связи /-орбиталей. Таким образом, место Т1 в периодической системе определяет своеобразие его индивидуальных свойств. [c.274]

    Соединения I- и р-элементов проявляют общие закономерности в свойствах, что о( ьясняется прежде всего сходавом электронного строения их атомоа, а именно, все электроны внешнего слоя являются валентными и принимают участие в образовании химических связей. Поэтому максимальная степень окисления этих элементов в соединениях равна числу электронов во внешнем слое и соответственно равна номеру группы, в которой находится данный элемент. [c.315]

    Книга посвящена новой и актуальной области науки — теории химической связи в твердых телах, которая впервые трактуется как один из разделов общей квантовой химии. В ней рассматривается влияние характера химической связи на особенности электронной (зонной) структуры и прослежены налогии между химической связью в молекулах и твердых телах. Дано краткое изложение основ квантовой химии и зонной теории твердого тела, рассмотрен характер химической связи и электронное строение для простейших типов твердых тел- ковалентных кристаллов элементов IV группы и других полупроводников. [c.304]

    Так как изотопы одного и того же элемента имеют одинаковый заряд ядра и соответственно одинаковое электронное строение, то химические свойства их практически тождественны. Исключение составляют изотопы легких элементов, у которых атомные массы существенно различаются. У таких изотопов и их соединений наблюдается заметная разница химических свойств. Примерами таких изотопов могут быть протий Н и дейтерий Н. Атомная масса дейтерия в два раза больше атомной массы протия. [c.33]

    Химические и спектральные характеристики элементов. Химические свойства элементов так же, как и их спектры, полностью определяются строением внешних электронных уровней. Поэтому имеется большая аналогия между спектром элемента и его химическим поведением. Например, все металлоиды и инертные газы трудновозбудимы, и их последние линии лежат в далеком или вакуумном ультрафиолете. Все металлы возбуладаются легче, их последние линии имеют большую длину волны. [c.41]


Смотреть страницы где упоминается термин Элементы химические электронное строение: [c.157]    [c.235]    [c.80]    [c.13]   
Современная общая химия Том 3 (1975) -- [ c.201 , c.202 ]

Современная общая химия (1975) -- [ c.201 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Атомы и молекулы — 34. Периодический закон химических элементов Д. И. Менделеева — 35. Открытие радиоактивности. , Р и - излучение — 37. Строение атомов — 42. Атомное ядро, протоны и электроны — 46. Изотопы и искусственная радиоактивность — 49. Радиоактивные изотопы в биологии

Периодическая система химических элементов Д. И. Менделеева как классификация атомов по строению их электронной оболочки

Периодическая система химических элементов и электронное строение атомов

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Квантово-механическая теория электронного строения атома

Строение химическое

Строение электронных оболочек атомов и химические свойства элементов

Строение ядер атомов химических элементов. Изотопы Строение электронных оболочек атомов на примере элементов IV периода

Химическая активность элементов в свете электронной теории строения атома

Электронное строение

Элемент химический

Элементов электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте