Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения разрывных характеристик

    Прочность ткани определяют по ГОСТ 3813—72 Ткани и штучные изделия текстильные. Методы определения разрывных характеристик при растяжении . Прочность тканей является важным показателем, характеризующим ее механические свойства. Под прочностью ткани на-разрыв понимают величину наибольшей нагрузки, предшествующей разрыву полоски ткани шириной 5 см. [c.14]

    Методы определения разрывных характеристик [c.39]


    B. И. Метод определения разрывной и упругой характеристик стеклянных пленок. Стекло и керамика , 1961, М 3. [c.455]

    Методы, основанные на определении модулей и использовании некоторых релаксационных характеристик, имеют значительные преимущества перед методом определения разрывной прочности, так как в первом случае измерение проводится без разрушения образца, что позволяет проследить на одном образце всю кинетику старения и резко снижает разброс результатов. В частности, такое определение условных модулей было использовано при измерении кинетики светостарения аналогичный метод применялся для определения кинетики растрескивания растянутых резин в атмосфере озона . [c.261]

    Изучение изменения механических характеристик при упругопластических деформациях традиционными методами определения механических характеристик невозможно, так как стандартный образец при упругопластическом деформировании находится в зажимах разрывной машины. Однако электронно-компьютерная система Прочность , позволяющая [c.32]

    Из механических методов испытаний необходимо отметить следующие испытание на разрыв и определение относительного сужения и удлинения разрывных образцов определение прочностных характеристик стали испытание на изгиб проволочных или плоских образцов длительные статические испытания разрывных гладких образцов и образцов с надрезом длительные испытания на статический изгиб. [c.158]

    Однако химики-исследователи изучают механические свойства отдельных полимерных материалов в зависимости от их молекулярных параметров, как, например, строения, молекулярного веса, формы, молекулярной и надмолекулярной структуры и т. д., поскольку указанные свойства определяются именно этими факторами. В качестве предварительной характеристики изменения полимера под действием механических сил служит определение изменения деформации во времени — определения линейной, нелинейной деформаций и процесса разрушения. Линейная деформация наблюдается в области малых напряжений и деформаций она характеризуется зависящим от времени модулем эластичности и коэффициентом Пуансона или модулем Юнга и модулем сдвига. Методами определения линейной деформации являются опыты на растяжение, изгиб, кручение, измерение твердости и т. д. Все измерения этого типа основаны на определении модуля эластичности. Нелинейные деформации полимеров до сих пор не были установлены в чистом виде обычно их надо учитывать как фактор, искажающий результаты при определении линейной деформации или при явлениях разрушения. Физическое описание процессов разрушения наиболее сложно, так как, например, хрупкое разрушение объясняется в основном наличием неоднородностей и слабых мест, которые и определяют характер разрушения. Любое тело, кажущееся однородным, в действительности обладает большим числом мелких дефектов, в которых начинается всякое хрупкое разрушение (трещина) и через которые оно разрастается. Поэтому по разрывной прочности никогда нельзя делать выводы о теоретически ожидаемой прочности связи. В соответствии с этим исследование процессов разрушения не может быть использовано для изучения зависимости свойств полимеров от их строения, молекулярного веса и т. д., так как разрушение поли- [c.199]


    Методы определения механических свойств зависят от формы материала. Для тканей определяется прочность (в кгс) полоски шириной 1 см, а иногда — прочность комплексных нитей утка и основы, которая выражается в кгс/нить. Для нетканых материалов, так же как для тканей, определяется прочность полосы шириной 1 см. Прочность шнуров, а иногда нитей выражается в кгс, которая зависит от толщины испытуемого образца и истинной прочности нити. Эти методы определения механических свойств, применяемые в текстильной промышленности и промышленности химических волокон, заимствованы из этих отраслей промьпиленности. Для перечисленных фор.м материала обычно определяются прочность и разрывное удлинение. Прочность представляет собой среднестатистическую величину, слагающуюся из показателей прочности большого числа нитей, а удлинение является условной характеристикой, зависящей от взаимного перемещения нитей при деформации тканей, но не истинной деформацией волокна. [c.263]

    Поскольку существование предельного напряжения ползучести не доказано, то пределом ползучести при данной температуре или при заданной продолжительности нагружения называют постоянное напряжение, которое вызывает деформацию заданной величины или определенную скорость деформации. Ускоренные методы определения предела ползучести не учитывают различия физико-хими-ческих и структурных процессов при кратковременном и длительном нагружении. Многие закономерности изменения сопротивления ползучести и обычных механических свойств в зависимости от внутренних и внешних факторов различны, а иногда даже противоположны. В процессе ползучести при повышенных температурах происходит непрерывное изменение структуры. При рекристаллизации (рост зерен) скорость ползучести значительно возрастает, т. е. сопротивление ползучести уменьшается. В отличие от кратковременной прочности, сопротивление ползучести в ряде случаев понижается в результате деформации и потому для некоторых материалов снижение пластичности приводит к повышению сопротивления ползучести. В результате ползучести снижается работоспособность не только разрывных, но и выщелкивающих мембран, хотя и в значительно меньшей степени. Последние через определенное время могут потерять устойчивость и для них кроме критической нагрузки важной характеристикой может являться также критическое время или критическая деформация. [c.161]

    Следует остановиться на некоторых специфических методах определения полуцикловых разрывных характеристик химических волокон и нитей. К их числу относятся испытания в атмосферных условиях, отличных от стандартных. [c.443]

    Определение разрывной нагрузки и удлинения волокон в мокром состоянии. Наряду со стандартным методом определения прочности и удлинения волокон в су.хом состоянии для более полной характеристики их свойств прибегают к определению прочности и удлинения волокон в мокром состоянии. [c.44]

    Очень существенным фактором, влияющим на скорость диффузии реагентов внутрь волокна, а следовательно, и на реакционную способность целлюлозы, является величина внутренней поверхности целлюлозного волокна, определяемая размерами имеющихся в нем капилляров (пор), их распределением в волокне, и изменение размеров капилляров в результате различных обработок целлюлозы. Влияние этого фактора до последнего времени недостаточно учитывалось при характеристике структуры целлюлозных материалов и, в частности, при определении ее реакционной способности . Обычно применяемое определение интенсивности межмолекулярного взаимодействия (между отдельными макромолекулами или элементами надмолекулярной структуры) физическими и физико-химическими методами (стр. 70) в ряде случаев достаточно для объяснения изменений в результате различных обработок таких свойств материала, как растворимость, разрывная прочность, теплоты смачивания и растворения. Однако для характеристики реакционной способности целлюлозы в различных процессах ее превращения, при которых скорость диффузии и количество продиффундировавшего реагента имеют существенное, а в ряде случаев решающее значение, эти определения, по-видимому, недостаточны. Определение суммарной внутренней поверхности материала и особенно ее изменений в результате различных воздействий на целлюлозу является очень существенным дополнительным методом характеристики структуры целлюлозных препаратов. [c.85]

    Различные виды волокон характеризуются различной абсорбционной способностью в отдельных участках спектра, поэтому при определенных длинах волн светового излучения абсорбционная способность одного вида волокна может существенно отличаться от абсорбционной способности волокна другого вида. Это приводит к тому, что в условиях искусственного облучения из-за отсутствия в спектре излучения определенных длин волн волокна по-разному реагируют на облучение и установить единый эквивалент между продолжительностью естественной инсоляции и искусственного облучения для всех видов волокон невозможной В качестве критерия оценки изменений свойств химических волокон после облучения используется комплексная характеристика по ряду свойств разрывной нагрузке и разрывному удлинению, работе разрыва, устойчивости к многократным изгибам и истиранию. Определяется также степень полимеризации и для окрашенных волокон — изменение цвета. В связи с трудоемкостью таких исследований часто оценка атмосферостойкости проводится только по изменению прочности волокна. Следует помнить о том, что приводимые в литературе результаты получены, как правило, разными методами на различных приборах и поэтому не всегда сопоставимы. [c.180]


    Определение прочности волокон при испытании петлей. Сущность этого метода заключается в том, что растяжению подвергаются одновременно два волокна в виде входящих одна в дру гую петель, концы которых закреплены в зажимах динамометра. Условия испытания сохраняются такие же, как и при определении прочности одиночных волокон, но величина груза предварительного натяжения удваивается. За характеристику прочности в петле принимают среднее значение разрывной нагрузки из 50 испытаний, деленное пополам. [c.44]

    Существующие методы определения проницаемости являются модельными установочными экспериментамя в рамках феноменологической теории фильтрации. Это означает, что фильтрационные процессы в анизотропных коллекторах описываются абстрактной математической моделью (обобщенным законом Дарси), в котором сложная истинная картина течения с разрывными материальными и полевыми характеристиками заменяется однородной ("размазанной") с непрерывными эффективными характеристиками Известно, что при подобном описании эффективные характеристики могут зависеть от размеров образца (масяптабный эффект) / 7 /, Для того, чтобы исключить влияние масштабного эффекта, необходимо в экспериментах использовать так называемые представительные образцы, т.е. такие образцы, размеры которых шого больше характерных размеров неоднородностей. [c.31]

    Изложение материала начинается с рассмотрения механики деформации резины и установленных в этой области закономерностей. Затем, по возможности полно, описываются аппаратура и методы, применяемые при определении основных видов механических характеристик, т. е. Тпри испытаниях на растяжение, сжатие, определении твердости, сопротивления истиранию и т. д. Отдельные главы посвящены устройству разрывных машин, измерению пластичности каучука и невулканизованных смесей, испытанию резины при многократных нагрузках, оценке амортизационной способности резины и механическим испытаниям эбонита. [c.11]

    Исследование коррозионных и механических свойств проводились на сплавах, содержащих от 0,5 до 2 вес.% никеля и железа при их соотношении 1 2 1 1 2 1. Сплавы приготавливали из йодидного циркония 99,8%, электролитического никеля, переплавленного в вакууме, и порошкообразного восстановленного железа высокой чистоты методом дуговой плавки с нерасходуемым электродом в атмосфере чистого аргона. Химический анализ показал хорошее совпадение с шихтовым составом. Параллельно велось испытание нелегированного циркония. Слитки, нагретые в буре до 900°, ковали в прутки диаметром 6 мм, которые затем подвергали отпуску при 600° в течение 0,5 часа для снятия напряжений ковки. Из отпущенных прутков изготовляли цилиндрические образцы для коррозионных испытаний и стандартные разрывные образцы с диаметром рабочей части 3 мм. Изучена коррозионная стойкость указанных сплавов в воде при 350° и 170 атм в течение 5500 час., в углекислом газе ири 500° и 20 атм в течение 2000 час., проверена окисляемость на воздухе при 650° в течение 400 час., а также исследованы механические свойства при испытании на растяжение при комнатной температуре и 400° и сопротивление ползучести при температурах 400, 500°. Исследование коррозионной стойкости в воде производилось в автоклаве из стали 1Х18Н9Т. Основными характеристиками коррозии служили привес на единицу площади поверхности (Г/ж ) и качество поверхности образцов. Сплавы испытывали в течение 5500 час., взвешивание и осмотр поверхности сплавов производили через 250, 500, 1000, 1500, 2500, 3500, 5000, 5500 час. Испытание по определению коррозионной стойкости в среде углекислого газа проводили также в автоклаве из нержавеющей стали. Предварительно вакуумированный автоклав наполняли таким количеством углекислого газа, которое при 500° создавало давление 20 атм. Для определения коррозионной стойкости сплавов служили те же характеристики, что и в случае водной коррозии привес (в Г/м ) и качество поверхности. Длительность испытания составляла 2000 час., взвешивали через 250, 500, 1250 и 2000 час. Окисление сплавов на воздухе при 650° осуществляли в открытой шахтной печи в кварцевых стаканчиках. Осмотр поверхности сплавов, взвешивание и определение привеса на единицу поверхности G/S) производили через каждые 50 час. Испытание сплавов на растяжение при комнатной температуре и 400° вели на машине типа РМ-500, при автоматической записи кривых растяжения. Определены величины предела прочности (ов) и относительного удлинения (б). [c.114]

    В конечном итоге физико-механические свойства порошков определяются силой контактного взаимодействия частиц, поэтому для решения как прикладных, так и фундаментальных теоретических задач в области физико-химической механики наиболее целесообразным представляется установление связи между макрореологическими характеристиками слоя порошка и силой взаимодействия частиц. Суш,ествует две концепции и соответственно две группы методов исследования реологических свойств порошков [57, 96]. Согласно одной из этих концепций свойства порошков рассматривают с позиций классической механики, а слой порошка — как сплошное пластическое тело. Соответствуюш,ие экспериментальные методы сводятся к определению предельных (сдвиговых и разрывных) напряжений, позволяющих рассчитывать применительно к конкретному порошку оптимальные параметры технологических устройств (бункера, воронки и т. д.). Существенным недостатком этой группы методов является невозможность оценить силу контактного взаимодействия частиц, а тем самым и природу сил, определяющих поведение порошка. [c.95]


Смотреть страницы где упоминается термин Методы определения разрывных характеристик: [c.536]    [c.536]    [c.89]   
Смотреть главы в:

Физико-химические испытания химических волокон -> Методы определения разрывных характеристик




ПОИСК





Смотрите так же термины и статьи:

Метод характеристик



© 2025 chem21.info Реклама на сайте