Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение химических свойств

    Почему в середине Периодической системы появляется группа элементов (лантаниды), у которых увеличение порядкового номера не вызывает существенного изменения их химических свойств, в то время как для большинства элементов изменение порядкового номера приводит к изменению химических свойств  [c.70]

    Периодичность изменения химических свойств элементов на примере их бинарных соединений с водородо.м и оксидов. Кислотные, основные и амфотерные свойства. [c.302]


    Изменение химических свойств элементов в группах имеет ряд интересных закономерностей. Номер группы соответствует наибольшей степени окисления элементов (см. 5.4). Д. И. Менделеев характеризовал значение высшей валентности элементов на основании их соединений с кислородом. Значение валентности по кислороду по группам возрастает от 1 до 8. Значение валентности по водороду имеет максимум для IV группы. В сумме обе валентности, начиная с IV группы, дают 8 (например, СОа и СН4, UO, и НС1). Номер группы, таким образом, указывает число электронов атомов элементов, которые могут участвовать в образовании химических связей, определяет диапазон валентных возможностей атомов элементов. В этом физический смысл номера группы в периодической системе. [c.90]

    Естественно, что фундаментальный закон химии, открытый Д. И. Менделеевым, — периодический закон—должен найти себе объяснение в закономерности строения атоМов, вскрываемой квантовой механикой. Периодичность в изменении химических свойств элементов при возрастании заряда ядра определяется периодическим повторением у определенных атомов строения внешних электронных оболочек. Легко заметить, что число электронов в последовательности от 5 до ближайшей конфигурации (первый период) или (остальные периоды) равно 2, 8, 8, 18, 32 (табл. 3), т. е. совпадает с числом элементов в периодах системы Д. И. Менделеева и объясняет, почему именно столько элементов содержится в данном периоде. Период начинается элементом, у которого впервые в системе возникает новый квантовый слой, содержащий один л-электрон (щелочной металл), и оканчивается элементом, у которого впервые в этом квантовом слое достраивается шестью электронами -подоболочка (благородные газы). Очевидно, что номер периода )авен главному квантовому числу электронов внешнего слоя. Например, атом натрия, открывающий третий период, и атом аргона, заканчивающий его, имеют конфигурации К 13л и К соответст- [c.60]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]


    Существует более компактная форма периодической таблицы, которая нагляднее показывает относительное изменение свойств соседних элементов (рис. 7-4). Закономерности изменения химических свойств могут быть легче поняты, если исследовать только типические элементы, рассматривая переходные металлы отдельно как особый случай и вообще оставляя в стороне вопрос о внутренних переходных металлах. В такой таблице вертикальные колонки называются группами и группы типических элементов нумеруются от 1А до УПА, а группа инертных (благородных) газов счи- [c.316]

    Периодичность изменения химических свойств элементов побочных подгрупп [c.45]

    Изменение химических свойств [c.117]

    Особенно хорошо коррелирует изменение химических свойств в ряду А Б с постепенным уменьшением концентрации алканов от 5в,7 до 15,5%. Напротив, нафтеновый паспорт нефтей как при лабораторном моделировании, так и в природных условиях практически остается неизменным. Лишь на очень глубоких стадиях окисления (Б ), как уже отмечалось, происходит некоторое изменение концентрации моноциклических нафтенов. [c.241]

    Элементы П1А-группы. Общая электронная конфигурация, электроотрицательность, степени окисления. Изменение химических свойств оксидов и гидроксидов элементов при увеличении порядкового номера. Бор как неметалл. Оксид и гидроксид бора. Бура. Распространение в природе. [c.176]

    Положение химического элемента в периодической системе является его важнейшей характеристикой, поскольку дает необходимую информацию об электронной структуре его атомов и прежде всего о строении его внешних валентных электронных уровней. Это позволяет судить о валентных возможностях химического элемента и важнейших формах его химических соединений. Зная характер изменения химических свойств в периодах и группах периодической системы, а также имея представление о свойствах соседей рассматриваемого элемента по группе и периоду, можно еще более полно описать основные аспекты его поведения. [c.23]

    Молярный коэффициент поглощения е зависит от длины волны абсорбируемого света, температуры и природы растворенного вещества и растворителя и, как правило, не зависит от концентрации раствора. Однако возможны исключения, когда в изменяется при разбавлении раствора. Это объясняется изменением химических свойств системы — происходит гидролиз, образование гидратов или ассоциация. Все-это, конечно, может влиять на коэффициент поглощения е. [c.40]

    В элементах побочных подгрупп изменение химических свойств в вертикальном направлении имеет свою специфику. В ПШ-под-группе от 8с к Ьа и Ас основные свойства элементов заметно усиливаются от амфотерных (у 5с) к ярко выраженным основным (Са— Ас), затем при достройке и /-подуровней при одном и том же числе слоев с элементами главных (А) подгрупп возрастает влияние увеличивающегося заряда ядра на валентные электроны. Это приводит к тому, что у элементов побочных подгрупп, в атомах которых завершается формирование внутренних слоев, может наблюдаться с увеличением Z возрастание ионизационных потенциалов, уменьшение химической активности, торможение нарастания радиусов атомов, ослабление основных свойств (например, в ряду Си — Ag— Аи). Химическая активность в этом ряду убывает с возрастанием порядкового номера, о чем свидетельствуют значения энергии Г иббса для бинарных соединений этих металлов. На золото сильное влияние оказывает лантаноидное сжатие. [c.92]

    Если располагать элементы в порядке возрастания их атомных масс с учетом изменения химических свойств, то от предложенной Д. И. Менделеевым формулировки периодического закона будут заметны некоторые отклонения. Например, по химическим свойствам иод располагается после теллура, хотя атомная масса иода меньше. Аналогичное явление наблюдается при переходе от аргона к калию и от кобальта к никелю. Такие исключения Д. И. Менделееву были известны, но объяснить их он не мог. [c.55]

    Прослеживая характер изменения химических свойств элементов в периодах и группах периодической системы, можно отметить нарастание неметаллических свойств в периодах слева направо и металлических в группах сверху вниз. Причем если в периодах свойства изменяются от типичного металла к типичному неметаллу, то в группах этого не наблюдается. [c.63]

    Периодическое изменение химических свойств элементарных веществ. Как уже указано выше (см. 1.18), химическая природа элементарных веществ определяется сочетанием их восстановительной и окислительной способностей. Очевидно, что эти способности должны также изменяться периодически в зависимости от порядкового номера [c.49]

    Элементы, в атомах которых заполняется в последнюю очередь /-подуровень, называются /-элементами. Они располагаются или в семействе лантаноидов (шестой период), или в семействе акти-. ноидов (седьмой период). Оценка электронного строения и важнейших свойств пока неизвестных элементов седьмого периода показывает, что они должны быть аналогами соответствующих элементов шестого периода. Для элементов восьмого периода (состоящего согласно теории из 50 элементов) предполагается сложный характер изменения химических свойств по мере роста порядкового номера, который связан с нарушением последовательности заполнения электронных подуровней в атомах. [c.27]


    Переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом решающую роль играют электроны, находящие- [c.84]

    Переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом решающую роль играют электроны, находящиеся на наружном электронном уровне атома или на уровнях, близких к наружному, так называемые валентные электроны. [c.110]

    Рассмотрим прежде всего переход нейтральных атомов в ионное состояние. При химических реакциях атомное ядро остается без изменения. Химические свойства атомов связаны со структурой их электронных оболочек. При этом главную роль играют электроны, находящиеся на внешнем электронном уровне атома. Электроны внешнего энергетического уровня являются валентными. Состав внешнего энергетического уровня атома элементов периодической системы с возрастанием порядкового номер а изменяется периодически. [c.191]

    В результате воздействия а-, р и у-излучения высокой энергии в металлических кристаллах возникают дефекты-вакансии и атомы в междоузлии (пары Френкеля), искажения кристаллических решеток и др. Как правило, в результате облучения меняются физические и химические свойства металлов. Механические свойства конструкционных металлов, как правило, меняются так Ств — предел прочности увеличивается (30—60%), б — относительное удлинение падает ( 50%) и нарастает микротвердость (30—50%), т. е. металл упрочняется, но охрупчивается. Электрическое сопротивление металлов после облучения возрастает. Изменение химических свойств можно оценить сдвигом в положительную сторону электродных потенциалов после облучения  [c.531]

    Становится понятным й качественный скачок в свойствах элементов при переходе от периода к периоду. Так, каждый период (кроме первого, сверхмалого) заканчивается инертным элементом со структурой пр . Следующий же период п + 1) возникает в результате образования нового электронного слоя, причем первым элементом этого периода является более активный щелочной металл с конфигурацией внешнего электронного слоя (п + 1) Последний же член периода имеет конфигурацию (п - - 1) р . Следовательно, переход от младшего периода ( ) к старшему п + 1) характеризуется изменением числа электронных оболочек атомов и их структуры. Это и приводит к скачкообразному изменению химических свойств элементов старшего периода по сравнению с соответствующими элементами младшего периода. [c.54]

    Следующим важнейшим выводом, который следует из анализа данных, приведенных в таблице 6, является вывод о периодическом изменении характера заполнения электронами внешних энергетических уровней, что и вызывает периодические изменения химических свойств элементов и их соединений. [c.30]

    Рассмотрите изменение химических свойств элементов семейства железа. Обоснуйте правильность перестановки Д. И. Менделеевым никеля и кобальта, несмотря на формальное нарушение физического принципа расположения элементов по возрастанию относительной атомной массы. [c.271]

    Менделеев исходил из представления, что наиболее существенным свойством атома является его масса, величина которой и должна служить основой для химической систематики элементов. Расположив элементы в порядке возрастания их атомных весов, он обнаружил периодичность изменения химических свойств оказалось, что для каждого элемента через некоторое число других имеется подобный ему элемент. Нз основе всестороннего вскрытия этой химической аналогии Менделеев открыл периодический закон и построил периодическую систему, которая в ее современной форме дана на форзаце (развороте переплета). В ней указаны номера элементов по порядку (атомные номера), их химические обозначения, названия и атомные веса. Для большинства элементов, претерпевающих радиоактивный распад, приведены в квадратных скобках массовые числа наиболее устойчивых атомов. [c.26]

    Изменение степени окисления элементов по группам периодической системы отражает периодичность изменения химических свойств элементов с ростом порядкового номера. [c.58]

    При образовании молекул простого вещества из одинаковых атомов не происходит принципиального изменения химических свойств, а изменяется лишь активность или способность вступать в химические реакции. Например, молекулярный азот N2 вступает в химические реакции с большим трудом, чем атомарный, но его химические свойства такие же, как у атомарного азота. [c.10]

    Физико-химические процессы (например, растворение) являются граничными между физическими н химическими процессами, но, как правило, не приводят к радикальному изменению химических свойств участвующих в них веществ. [c.11]

    Из анализа приведенных графиков 2 , становится ясным, почему О и Р не имеют соединений высшей валентности, в то время как у их электронных аналогов они есть, и почему изменение химических свойств в 4-м и других больших периодах имеет повторяющуюся периодичность (подробно см. гл. 12), [c.55]

    Какие закономерности проявляются в изменении химических свойств металлов главной подгруппы II группы с возрастанием порядкового номера  [c.141]

    Высшая положительная степень окисления элемента в его соединениях равна номеру группы периодической системы, в которой находится этот элемент. Для некоторых элементов сумма низшей отрицательной и высшей положительной степеней окисления равна восьми. Изменение степени окисления элементов по группам периодической системы отражает периодичность изменения химических свойств элементов с ростом порядкового номера. Поэтому степень окисления элемента можно считать его важной количественной характеристикой в соединениях. [c.145]

    Менделеев исходил из представления, что наиболее существенным свойством атома является его масса, значение которой и должно служить основой для химической систематики элеиентов. Расположив элементы в порядке возрастания их атомных масс, он обнаружил периодичность изменения химических свойств  [c.22]

    График 1. Изменения химических свойств. Размеп>те ось л (ось атомных номеров) числами от О до 20. Отберите формулы либо оксидов, либо хлоридов и разместите их на оси у. Чтобы отложип. данные по хлоридам, нанесите на ось у число О, если хлориды не образуются, 1, если образуются соединения общей формулы ЭС1 (один атом элемента приходится на один атом хлора), 2 - для соединений обаи й формулы ЭС12, 3 [c.126]

    Каталитическую активность а-химотрипсина нельзя приписать исключительно наличию системы переноса зарядов. Из рентгено структурных исследований следуют многие другие факторы, от ветственные за каталитический процесс. Было обнаружено де вять видов специфических ферментсубстратных взаимодействий которые повышают эффективность а-химотрипсина. Например стабилизация тетраэдрического интермедиата, а следовательно понижение энергетического барьера переходного состояния, со провождается образованием водородной связи между карбониль ной группой субстрата и амидным атомом Ser-195 и Gly-193 В химотрипсиногене эта водородная связь отсутствует. Действи тельно, уточнение структур химотрипсиногена и а-химотрипсина с помощью рентгеноструктурного анализа показывает различия в расположении каталитической триады в зимогене и ферменте. Это конформационное изменение в общей трехмерной структуре фермента, возможно, вызывает значительные изменения химических свойств каталитического центра, что может играть важную роль в увеличении ферментативной активности при активации зимогена. [c.221]

    Роль попятной тенденции в развитии ряда химических элементов в таблице Д. И. Менделеева выполняла валентность. Хотя и она не являлась первопричиной цикличности (возвратов) в изменении химических свойств элементов в ряду. Теперь нам известно, что валентность является следствием послойности заполнения электронных оболочек атомов. [c.152]

    В растворах же состав может меняться непрерывно без существенного изменения химических свойств. Так, количество H l в растворе соляной кислоты может доходить до 37%, причем все растворы соляной кислоты будут обладать химическими свойствами, характерными для данной кислоты (взаимодействие со и елочами, с металлами и пр.), при этом однородность растворов кислоты не изменится. Это свойство понятно из приведенного здесь в виде обратимой реакщ и механизма образования раствора. Уравнение обратимой реакции показывает, что в растворе все время находятся в равновесии сольваты разного состава, поэтому изменение количества растворителя в растворе приведет лишь к изменению соотношения между этими сольватами, но не нарушит однородности и не изменит в некоторых пределах химических свойств раствора. [c.29]

    Молекула — это наименьшая частица вещества, сохраняющая его состав и химические свойства. Молекула не может дробиться дальше без изменения химических свойств данного вещества. Между молекулами вещества существует взаимное притяжение, различное у разных веществ. Молекулы газообразных веществ притягиваются друг к другу очень слабо, в то время как между молекулами жидких и твердых веществ силы притяжения ведики. Молекулы любого вещества нахо- [c.6]

    У длинной формы есть много достоинств, но есть и недостатки. Подробно их обсуждали Фостер и Лудер". Вследствие недостатков длинной формы в последнее время предложено множество периодических таблиц, некоторые из них будут рассмотрены в дальнейшем. Однако длинная форма обладает преимуществом перед другими, известными в настоящее время таблицами в том смысле, что она дает понимание электронной основы периодической системы и в то же время четко отражает сходство, различие и ход изменений химических свойств элементов. Поэтому последующее обсуждение периодической системы будет происходить на основе таблицы длинной формы. [c.91]

    В У1ИБ группу Периодической системы входят три триады элементов в 4-м периоде — железо Ре, кобальт Со и никель N1 (семейство железа), в 5-м периоде — рутений Ки, родий РЬ и палладий Р<1 (легкие металлы семейства платины) и в 6-м периоде—осмий Оз, иридий 1г и платина Р1 (тяжелые металлы семейства платины). Таким образом, в этой группе прослеживается изменение химических свойств как внутри периода (вдоль триад), так и внутри вертикальных последовательностей (Ре—Ки—Оз, Со—КН—1г, N1—Рс1—Р1). Для рассмотрения общей характеристики элементов УП1Б группы наиболее удачным пре.дставляется деление на семейства железа (3 элемента) и платины (6 элементов). [c.243]

    Если считать критерием для размещения элемента в периодической системе величину его атомной массы (атомного веса но Менделееву), следует вместо последовательности Ре—Со—N1 принять другую Ре—N1—Со, т. е. никель должен предшествовать кобальту в периодической системе. Однако, несмотря на то, что Менделеев в качестве основного параметра, определяющего последовательность расположения элементов в периодической системе, принял величину атомной массы, он, будучи блестящим химиком, счел неиравильным подчинение формальному критерию и разместил Ре, Со, N1 так, как этого требовала последовательность изменения химических свойств соответствующих однотипных соединений в триаде железа. Таким образом, Менделеев фактически размещал элементы в периодической системе в соответствии с химическими свойствами их соединений, т. е. в конечном счете, как нам теперь понятно, 1в соответствии ео строением их электронных оболочек. В частности, у элементов триады железа Менделеев учитывал большую склонность Ре к переходу в трехвалентное состояние и все уменьшающуюся устойчивость соединений со степенью окисления + 3 к кобальту и затем к никелю. [c.114]

    Физические процессы (плавление, нагрев, испарение), изменяя физические свойства вещества, не изменяют строения атомов и молекул, из которых состоит данное вен1ество, и не приводят к изменению химических свойств.  [c.10]


Смотреть страницы где упоминается термин Изменение химических свойств: [c.173]    [c.83]   
Смотреть главы в:

Кокс -> Изменение химических свойств




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств



© 2025 chem21.info Реклама на сайте