Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Иридий, осмий, рутений, платина

    Рутений и осмий сопутствуют платине и палладию в полиметаллических рудах, а также встречаются в виде самородных сплавов с иридием и платиной. [c.581]

    Подробнее о физич. и химич. свойствах П. м., их соединениях, простых и комплексных, нахождении в природе и применении см. Иридий, Осмий, Палладий, Платина, Родий, Рутений. [c.40]

    Шесть платиновых металлов — осмий, рутений, платина, палладий, родий и иридий — встречаются в природе главным образом в металлическом состоянии в виде многочисленных сплавов, содержащих обычно большинство (если не все) из этих шести металлов совместно с золотом, а также железом, медью и некоторыми другими неблагородными металлами, например никелем и кобальтом. Эти сплавы обычно ассоциируются друг с другом и нередко с самородным золотом. Наиболее часто встречаются сплавы, в которых преобладает платина. В следующих по распространенности сплавах основными компонентами являются осмий и иридий, так называемые осмистый иридий и иридистый осмий. Наиболее редко встречается рутений, содержащийся главным образом в сплавах иридия и осмия. Осмистый иридий и иридистый осмий, как правило, находятся совместно с платиновыми сплавами, но иногда встречаются и самостоятельно. Встречаются также более или менее чистый самородный иридий, сплав его с платиной и относительно чистый палладий. Известен самородный сплав золота с палладием, называемый п о р-п е 3 и т о м. Найдены также сплавы золота с родием и палладия с ртутью ( п о т а р и т). [c.395]


    Сравнительные исследования активности контактных веществ, проведенные Реми, показывают, что предопределение активности катализатора будет возможно после выяснения сродства металлов по отношению к кислороду и водороду. Реми считает, что у металлов восьмой группы периодической системы растворимость водорода возрастает в следующем порядке рутений, осмий, платина, родий, кобальт, железо, никель, иридий и палладий, а химическое сродство по отношению к кислороду возрастает в следующем порядке платина, палладий, иридий, осмий, рутений, родий, никель, кобальт и железо. Он предполагает, что если металл стоит в первом ряду на месте, которое предшествует его положению во втором ряду, то после предварительной обработки водородом он приобретает более высокую активность, чем после обработки кислородом, и наоборот. Если металл находится во втором ряду в положении, предшествующем положению в первом ряду, то после предварительной обработки кислородом он становится более активен, чем после обработки водородом. Металлы, окиси которых отличаются высокими теплотами образования, обладают сравнительно малой каталитической активностью. [c.253]

    Обычно на практике классифицируют металлы, исходя из общих сырьевых, технологических и потребительских признаков. Принято разделение металлов на черные и цветные. К черным металлам относятся железо и его сплавы, а также металлы, применяемые главным образом в сплавах с железом—хром, марганец. К ц в е т н ы м—относятся все остальные металлы, которые, в свою очередь, подразделяются на тяжелы е—медь, никель, свинец, олово, цинк л е г к ие—алюминий, магний, калий, натрий малы е—сурьма, ртуть, висмут, кадмий редкие—вольфрам, молибден, ванадий, кобальт, ниобий, тантал, титан, бериллий, литий и др. рассеянны е—германий, рений, индий, галлий и др. благородные—платина, палладий, иридий, осмий, рутений, золото и серебро. [c.113]

    В двойнослойной области основная часть подводимого электричества затрачивается на изменение заряда двойного электрического слоя. Измерения изоэлектрических сдвигов потенциала (см. 3.1) однозначно доказывают, что в сернокислых растворах в двойнослойной области потенциалов происходит постепенное уменьшение количества адсорбированного водо-лО. рода и возрастание количества адсорбированного кислорода, т. е. перекрывание областей адсорбции водорода и кислорода. Степень этого перекрывания зависит от pH раствора и концентрации ионов 50 " и уменьшается с уменьшением pH и с ростом концентрации 80 . В целом, однако, количество адсорбированных водорода и кислорода в сернокислых растворах на платине в двойнослойной области невелико. Степень перекрывания областей адсорбции водорода и кислорода зависит также от природы металла. Так, она наименьшая в сернокислых растворах на палладии и возрастает при переходе к платине, иридию, родию, рутению и осмию. [c.188]


    Кроме разделения на легкую и тяжелую триады при рассмотрении свойств платиновых элементов иногда проводят вертикальную классификацию и выделяют диады рутения — осмия рутения — иридия, палладия — платины. [c.150]

    Определению мешают палладий, родий, иридий, осмий, рутений. Реактив пригоден для определения платины и палладия без их предварительного разделения. В этом случае палладий, дающий кроваво-красную окраску, определяют, измеряя светопоглощение при 525 ммк при комнатной температуре, когда платина не взаимодействует с реагентом, затем раствор нагревают и определяют суммарную абсорбцию также при длине волны 525 ммк. Содержание платины определяют по разности. Допустимые количества палладия составляют 0,25—1 мкг/мл. [c.162]

    Шесть платиновых металлов—осмий, рутений, платина, палладий, родий и иридий—встречаются в природе главным образом в металлическом состоянии в виде многочисленных сплавов, содержащих обычно большинство (если не все) из этих шести металлов совместно с золотом, железом, медью и некоторыми другими неблагородными металлами, такими, как никель и кобальт. Эти сплавы обычно ассоциируются друг с другом и нередко с самородным золотом. Наиболее часто встречаются сплавы, в которых преобладает платина. В следующих по распространенности сплавах основными компонентами являются осмий и иридий, так называемые [c.361]

    Серебро Т антал Титан Золото Иридий Осмий Палладий Платина Родий Рутений [c.53]

    При сравнении таких катализаторов гидрокрекинга, как иридий, осмий, платина, рутений и родий на кислотных носителях было показано, что при содержании металлов в катализаторе в количестве 0,5% высшей активностью обладал родиевый катализатор, однако наибольший выход углеводородов С5 получен на платиновом катализаторе. [c.320]

    Определение золота в сплавах благородных металлов восстановлением его гидрохиноном Анализируемый сплав растворяют в царской водке и удаляют нитрат-ионы как можно полнее, выпа-зивая раствор досуха с избыточным количеством соляной кислоты. Три этом выделяется хлорид серебра, который и отфильтровывают. Дальше проводят восстановление гидрохиноном в 1,2 н. по содержанию соляной- кислоты в растворе. Золото выделяется в осадок, количественно при этом отделяясь от платины, палладия, родия, иридия, осмия, рутения, селена и теллура. [c.778]

    Общие сведения. К металлам платиновой группы (платиноидам) относятся рутений (Ки), родий (КЬ), палладий (Рё), осмий (Оз), иридий (1г) и платина (Р1). Благодаря красивому внешнему виду и высокой химической стойкости платиноиды наряду с золотом и серебром называют благородными металлами. Значительно расширилось применение платиноидов в различных отраслях промышленности, что связано с развитием нефтехимии, химии катализаторов, электроники, авиастроения увеличился контакт работающих с порошкообразными металлами, их оксидами и солями. [c.469]

    В промышленности различают черные металлы железо и его сплавы, чугун и различные виды сталей и цветные металлы алюминий, кальций, свинец, медь, золото, кадмий, никель, кобальт, серебро, все остальные металлы и их сплавы. Цветные металлы в соответствии с их свойствами делят на л е г к и е (щелочные и щелочноземельные металлы, магний, алюминий, титан), тяжелые (медь, свинец, никель, золото, цинк, марганец, кобальт), редкие, в том числе благородные и радиоактивные металлы (золото, серебро, селен, теллур, германий, металлы платиновой группы платина, палладий, родий, осмий, рутений, иридий радиоактивные металлы уран, то-266 [c.266]

    БЛАГОРОДНЫЕ МЕТАЛЛЫ (драгоценные металлы) золото, серебро, платина и металлы платиновой группы (иридий, осмий, палладий, родий, рутений), получившие свое название гл. обр. благодаря высокой хим. стойкости и красивому, внеш. виду в изделиях. [c.297]

    МОЛИБДЕН, СЕЛЕН, ТЕЛЛУР, ГЕРМАНИЙ, ЗОЛОТО, ПЛАТИНА, ПАЛЛАДИЙ, РОДИЙ, ОСМИЙ, РУТЕНИЙ, ИРИДИЙ  [c.543]

    ПЛАТИНА, ПАЛЛАДИЙ, РОДИЙ, ОСМИЙ, РУТЕНИЙ И ИРИДИЙ [c.562]

    Благородные металлы — золото, серебро, платина, палладий, иридий, родий, осмий, рутений. Данный термин используют для характеристики их высокой стойкости к окислению и воздействию афессивных сред. [c.52]

    Платиновые металлы — рутений Ри, родий РН, палладий Рс1 (леп<ие платиновые металлы) осмий Оз, иридий 1г и платина Р1 (тяжелые платиновые металлы). [c.233]

    В качестве катализаторов используются металлы, оксиды или сульфиды металлов группы палладия (родий, рутений), платины (иридий, осмий), железа. В качестве носителей могут применяться смеси оксидов элементов следующих подгрупп Периодической системы IIA (Ве, Mg, Са), 1ПВ (А1), IVA (Ti, Zr), IVB (Si). Наиболее часто используются аморфные или кристаллические алюмосиликаты. Активность и селективность катализатора увеличивается при введении в его состав промотирующих добавок, например, галогенов. [c.738]

    Чистый иридий получают из самородного осмистого иридия и из остатков платиновых руд (после того как из них извлечены платина, осмий, палладий и рутений). О технологии получения иридия распространяться не будем, отослав читателя к статьям Родий , Осмий и Платина . [c.210]

    Цветные металлы делятся на 4 группы 1. Тя ж е л ы е медь, свинец, олово, цинк и никель. 2. Легкие алюминий, магний, кальций, калий и натрий. Часто к этой группе относят также барий, бериллий, литий и другие щелочные и щелочноземельные металлы. 3. Драгоценные или благородные платина, иридий, осмий, палладий, рутений, родий, золото и серебро. [c.382]


    Состав группы. В УШБ группу входят девять элементов, которые делятся на семейства железа, включающее железо Ре, кобальт Со, никель N1, и семейство платины, включающее рутений Ки. родий КН. палладий Р(1 (легкие платиновые металлы) и осмий Оз, иридий 1г и платину Р1 (тяжелые платиновые металлы). [c.423]

    Распространение и добыча. Благородные металлы встречаются в природе в самородном состоянии, например платина (содержание в земной коре 5-10 %) ей обычно сопутствуют все другие платиновые металлы — иридий, осмий, палладии, родий, рутений. Содержание серебра в земной коре 10 %, оно встречается как в самородном состоянии, так и в виде руд, содержащих сульфггдные минералы, например АддЗ — серебряный блеск и др. Золото (содержание в земной коре 5-10 %) находится в природе преимущественно в самородном виде. [c.327]

    ПОЗВОЛЯЮТ сделать следующие выводы. Палладий, иридий, родий, рутений, осмий ( ) и серебро, по-видимому, сравнимы в этом отношении с платиной получить не содержащие примесей никель, железо и кобальт труднее, чем платину медь( ) и рений занимают промежуточное положение. Хотя эти выводы основаны на результатах восстановления объемной фазы окислов, аналогичное заключение об относительной реакционной способности справедливо и при рассмотрении взаимодействия между газообразным водородом и хемосорбированным кислородом [39, 53]. [c.309]

    Лепинь [263] дает интерпретацию пассивного состояния металлов, основанную на теории окисных пленок Фарадея, и предполагает, что пассивность металлов вызывается поверхностными соединениями, в особенности кислородными, свойства которых существенно отличаются от свойств продуктов объемной реакции. Чем меньше расстояние между атомами, тем труднее идут объемные реакции и тем благоприятнее условия для поверхностных реакций. Описывая каталитическую активность металлов при гидрогенизации бензола, Вест-линг [472] расположил металлы по коротким атомным расстояниям в решетке в ряд никель, кобальт, медь, рутений, родий, иридий, осмий, палладий и платина он утверждал, что активность металла снижается пропорционально удалению короткого атомного расстояния от обоих пределов. [c.244]

    Железо, кобальт, никель, рутений, родий,, палладий, осмий, иридий, и/или платина, осажденные на кизельгуре или асбесте нейтральные масла могут быть гидрогенизованы над натрием [c.299]

    Размер частиц некоторых типичных катализаторов, содержащих родий, иридий, осмий, рутений и золото, приведен в табл. 4. Общая тепде щия влияния концентрации металла и температуры прокаливания такая л<е, как и для платины. Иридиевые катализаторы с 5—36% 1г, полученные соосаждением гелей гидроокисей алюминия и иридия, имеют несколько больший размер частиц металла после дегидратации и восстановления водородом, чем образцы, полученные при сопоставимых условиях методом пропитки [79]. По данным [80], при получении рутения на у-окпси алюминия пропиткой носителя раствором хлористого рутения дисперсность металлического рутения после восстановления значительно выше (средний размер частиц - 2нм), если хлорнд рутения разлагают в водороде если разложение проводить на воздухе с последующим восстановлением водородом, [c.209]

    Гидрогенизация бензола в циклогексан Никель, кобальт, медь, рутений, родий, иридий, осмий, палладий, платина Активность убывает по мере уменьшения атомных расстояний и удаления от концов никел имеет меньшую, платина — большую активность 353Т [c.258]

    В своих сочинениях Менделеев неоднократно пытался найти объяснение близости свойств редкозедшльных элементов. В 1871 г. он указывал, что недостаток целого 9-го ряда и даже почти целого большого периода (начиная от Се = 140), однако едва ли должно приписать одной случайности и, может быть, есть в природе элементов причины . В марте 1870 г., в первом издании Основ химии , характеризуя церитовые металлы, Менделеев особо отмечал, что все они имеют близкие атомные веса. По мнению Менделеева, существуют еще несколько других примеров этого рода. Таковы никель и кобальт, и их атомные веса чрезвычайно близки родий, рутений и палладий, с одной стороны, иридий, осмий и платина, с другой, представляют также элементы, значительно сходные между собой и имеющие очень близкие атомные веса. Железо и марганец по свойствам близки друг к другу и атомные веса их также весьма близки . Впервые эта мысль была высказана еще в первой статье, посвященной периодическому закону (1869 г.) множество вопросов рождается при сопоставлении в одно целое всех элементов, но самый [c.44]

    ОНИ представляют близкие атомные веса, а именно, сколько то известно, вероятно не совсем точно, най церия равен 92, най лантана 90 (по другим 94), най дидимия равен 95. Несомненно, что паи их близки йюжду собою, и мы увидим впоследствии еще несколько других примеров этого же рода. Таковы никкель и кобальт и их паи чрезвычайно близки родий, рутений и палладий, с одной стороны, иридий, осмий и платина, с другой стороны, представляют также элементы, значительно сходные между собою и имеющие очень близкие атомные веса. Железо и марганец по свойствам близки друг к другу, и паи их также весьма близки. Из этого можно заключить, что в ряду элементов есть два класса, сходственных между собою в одном классе элементов сходственные вещества представляют постепенное увеличение в атомном весе, сообразно с постепенным изменением в характере и в свойствах соединений. Пример этому мы знаем уже в галоидах, щелочных Металлах, в металлах щелочных земель и будем видеть еще над многими другими простыми телами. Другой разряд сходственных элементов характеризуется тем, что при том большом сходстве, какое здесь существует, нет различия или, правильнее сказать, нет значительного различия в величине атомного веса сходственных элементов. Причина различия в первом разряде сходственных элементов весьма понятна из значительной разности в весе атомов сходных элементов, но для металлов второго разряда причина замечаемого различия не лежит уже в величине и в весе атома, а, конечно, в других внутренних различиях материи, входящей в состав атомов таких сходственных элементов, подобно тому различию, какое замечается между изомер [194]ными сложными телами. Между последними известна изомерия нескольких родов один вид такой изомерии, называемый полимерностью, весьма легко понимается, потому что вес частицы полимерных тел не одинаков. Мы видели пример этому в углеродистых водородах, гомологических этилену, но есть другой род изомерия, называемый метамерностию. Метамерные тела имеют один и тот же вес частицы, но между тем в них распределение частей или атомов внутри частицы, несомненно, неодинаково, потому что их реакцйи различны и оНи распадаются при одинаковом влиянии [c.294]

    В У1ИБ группу Периодической системы входят три триады элементов в 4-м периоде — железо Ре, кобальт Со и никель N1 (семейство железа), в 5-м периоде — рутений Ки, родий РЬ и палладий Р<1 (легкие металлы семейства платины) и в 6-м периоде—осмий Оз, иридий 1г и платина Р1 (тяжелые металлы семейства платины). Таким образом, в этой группе прослеживается изменение химических свойств как внутри периода (вдоль триад), так и внутри вертикальных последовательностей (Ре—Ки—Оз, Со—КН—1г, N1—Рс1—Р1). Для рассмотрения общей характеристики элементов УП1Б группы наиболее удачным пре.дставляется деление на семейства железа (3 элемента) и платины (6 элементов). [c.243]

    Платина — элемент редкий и в природе находится в рассеянном состоянии. Самородная платина обычно представляет собой естественный сплав с другими благородными (палладий, иридий, родий, рутений, осмий) и неблагородными (железо, медь, никель, свинец, кремний) металлами. Такая платина (ее называют сырой или шлиховой) встречается в россыпях в виде тяжелых зерен размером от 0,1 до 5 мм. Содержание элементной платины в этом природном сплаве колеблется от 65 до 90%. Самые богатые уральские россыпи содержали по нескольку десятков граммов сырой платины иа тонну породы. Такие россыии очень редки, как, кстати и крупные самородки. Сырую платину, подобно золоту, добывают из россыпей промыванием размельченной породы на драгах. [c.221]


Смотреть страницы где упоминается термин Иридий, осмий, рутений, платина: [c.395]    [c.403]    [c.361]    [c.310]    [c.237]    [c.255]    [c.149]    [c.239]    [c.407]    [c.417]   
Смотреть главы в:

катализ реакций органических соединений серы -> Иридий, осмий, рутений, платина




ПОИСК





Смотрите так же термины и статьи:

Благородные металлы Золото, осмий, рутений, платина, палладий, родий и иридий Платиновые металлы

И рутений — ИрИДИЙ

Иридий

Иридий и осмий

Иридий-191 и иридий

Осмий

Осмий осмий

Подгруппа VIIIE. Семейство платины (рутений, родий, палладий, осмий, иридий, платина)

Подгруппа, VIIIB. Семейство платины (рутений, родий, палладий, осмий, иридий, платина)

Рутений

Рутений рутений

Рутений, родий, палладий, осмий, иридий, платина

осмий платину



© 2025 chem21.info Реклама на сайте