Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь адсорбция платиной

    На рнс. 59 показаны инфракрасные спектры поглощения оксида углерода, адсорбированного на четырех различных металлах. Молекула газообразного оксида углерода почти неполярна и имеет лишь слабое поглощение при 2143 см . Кетоны поглощают излучение в области 1900...1600 см . Как видно из рис. 59, при адсорбции оксида углерода на меди частота колебаний связи изменяется незначительно, а при адсорбции на палладии частота становится почти такой же, как частота колебаний карбонильной группы в кетонах. Полученные данные свидетельствуют, что молекула оксида углерода адсорби-р1 тся на атоме меди нли платины в виде М—С=0, а с никелем или палладием [c.146]


    Хотя в электрохимической литературе имеются отдельные работы, посвященные изучению адсорбции некоторых органических соединений на электродах из платины, железа, никеля, серебра и меди методом обеднения раствора адсорбатом, из-за указанных трудностей метод этот не нашел широкого применения. С другой стороны, возможность электроокисления или электровосстановления адсорбированных на электроде веществ, влияние адсорбции органических соединений на электрокапиллярное поведение электрода и на электрическую емкость двойного слоя явились основой специфических, применяемых лишь в электрохимии методов изучения адсорбции органических веществ. Наряду с методом радиоактивных индикаторов, а также с развивающимися в последние годы оптическими и спектроскопическими методами эти методы наиболее широко распространены в электрохимии. Принципы электрохимических методов изучения адсорбции органических веществ на электродах мы коротко и рассмотрим в данной главе. [c.7]

    Например, основной метод разделения и очистки элементарных газов (азота и кислорода) состоит в дробной перегонке предварительно сжиженного воздуха и последующего избирательного поглощения примесных газов на специальных поглотителях. В последнее время в целях глубокой очистки газов щироко применяются процессы, основанные на диффузии (струйное фракционирование, диффузия через полупроницаемые мембраны, препаративная газовая хроматография, метод молекулярных сит). Однако до сих пор высшая степень очистки простых газов все же не превышает 99,99 %и лишь в отдельных наиболее благоприятных случаях приближается к пяти девяткам (99,999 %). Общей помехой для получения чистых газов является адсорбция влаги и посторонних газов на стенках емкостей, применяемых в ходе их очистки. Удалить посторонние прилипчивые газы со стенок стеклянной или металлической аппаратуры можно лишь путем длительного отжига в вакууме. Вместе с тем следует учесть также возможность поглощения самих эталонируемых газов конструкционными материалами (азота — титаном, танталом, цирконием и их сплавами водорода — платиной, осмием, иридием кислорода — медью, серебром и другими металлами). Кроме того, многие металлы и сплавы оказываются частично проницаемыми для отдельных газов (в первую очередь это относится к легким газам — водороду и гелию), что приводит к нх просачиванию в сосуды с эталонными газами извне. Таким образом, проблема эталонирования даже простых газов оказывается далеко не легким делом. [c.52]


    В структуре (2X2) атомы кис- =еТр" к7у ра лорода располагаются непосредственно над атомами металла. В структуре с (2X2) атом кислорода расположен в центре квадрата, образованного четырьмя атомами металла. Возникновение этих структур сопровождается ростом работы выхода электрона. Указанные структуры обнаружены при адсорбции кислорода на кубических гранях никеля, платины, меди и железа. [c.39]

    По мере повышения температуры на металлах, которые могут образовывать с водородом химические соединения, протекает активированная адсорбция. Активированная адсорбция возникает в системах водорода с медью, железом и никелем и не обнаружена на золоте и серебре. Активированная адсорбция — результат диссоциации молекул водорода на атомы, которые связываются с атомами металла на его поверхности. Теплота активированной адсорбции значительно выше физической и составляет в кДж/моль для меди 40—73 при 25 °С, для никеля 52—120 при О °С, для железа 43 в интервале от —96 до 78 °С и для платины 40—120 при О °С [84]. Количество водорода, поглощенное при активированной адсорбции металлическими порошками, может достигать 10—1000 см на 100 г. [c.247]

    Кинетика и механизм адсорбции. Количественные исследования кинетики адсорбции сероводорода на поверхностях макрокристаллов [25, 26] показали, что для платины и меди существуют два адсорбционных режима. При степени покрытия монослоя ниже 0,5—0,6 идет быстрая адсорбция с высоким коэффициентом конденсации. При больших степенях покрытия адсорбционный процесс значительно замедляется и наблюдается низкий коэффициент конденсации. Природа явления еще не объяснена, но из этих наблюдений ясно, что адсорбция сероводорода на поверхности металла воздействует на его поведение сильнее, чем можно ожидать, исходя из простого взаимодействия одного атома серы с одним атомом металла на поверхности. Одним из возможных объяснений может быть реконструкция поверхности, обсуждаемая ранее. [c.66]

    При адсорбции некоторых полимеров на гладких поверхностях разной химической природы не установлено значительных различий в величинах адсорбции. Так, Патат и сотрудники [991 не обнаружили значительных изменений в адсорбции полимеров на поверхности металлов (алюминия, платины, меди). Однако на целлюлозе адсорбция выше, чем на металлах, что авторы объясняют наличием на поверхности целлофана гидроксильных групп. [c.65]

    По данным [88], адсорбция кислорода на различных металлах протекает так быстро, что кинетику процесса не удается измерить это указывает на очень малую энергию активации адсорбции. После быстрой адсорбции начинается медленное поглощение кислорода решеткой металла. Для никеля, меди и некоторых других металлов это поглощение сопровождается образованием окислов, для благородных металлов (платина, серебро) медленный процесс поглощения приводит к растворению кислорода в приповерхностных слоях. В электронном и ионном проекторах [90] обнаружена слабосвязанная (молекулярная) форма кислорода а платине (теплота адсорбции 42 кДж/моль, ли 10 ккал/моль). Методом термодесорбции 91] также установлена молекулярная форма адсорбированного кислорода, но на отдельных гранях монокристалла образуются и атомарный и молекулярный ионы кислорода (0 и О2). [c.37]

    Мэкстед [98], исследуя дифференциальную теплоту адсорбции водорода на платине при О и 20°, нашел, что дифференциальные теплоты адсорбции проходят через точно установленные максимумы, которые при старении катализатора становятся менее резко выраженными. Тейлор и Кистяковский [141] особенно отмечают, что теплота адсорбции меняется со временем. Она значительно уменьшается к концу того времени, когда поверхность совершенно заполнится. Мэкстед также отмечал, что дифференциальные теплоты адсорбции специфичны для условий предварительной обработки [109] катализатора и что высокая каталитическая активность связана с высокой дифференциальной теплотой адсорбции. Тейлор иллюстрировал значение величин дифференциальных теплот адсорбции для каталитической активности наблюдениями Дью по адсорбции аммиака на меди, никеле и железе, указывающими, что все кривые теплот адсорбции идут параллельно и что теплота адсорбции на железе больше теплот адсорбции на никеле на 5000 кал и на меди на 7000 кал. Тейлор сделал дальше вывод [c.149]

    Разработанные нами методы основаны на предположениях, что удельная адсорбция газов — величина постоянная, не зависящая ни от дисперсности активного вещества, ни от контактирования его с другими фазами. Независимость удельной адсорбции от дисперсности окиси и закиси меди доказана нами экспериментально (см. табл. 2 и 3). Непосредственно проверить, не изменяется ли величина адсорбции в местах контактирования активного вещества с носителем, весьма трудно. Косвенное подтверждение правильности этого предположения получено в работе [И]. В этой работе авторы определили размер частиц платины, нанесенной на у-АЬОз по хемосорбции водорода, предполагая, что удельная адсорбция на платиновой черни и на нанесенной платине имеет одно и то же значение. Полученные результаты полностью совпали с рентгенографическими измерениями, что свидетельствует о правильности сделанного предположения. Поэтому при нанесении окиси и закиси меди на тот или иной носитель можно ожидать, что адсорбционные свойства их не изменятся. Однако в случае совместного присутствия окиси и закиси меди на носителе нельзя категорически утверждать, что в местах контакта СиО/СигО адсорбционные свойства такие же, как и на чистых окислах. Поэтому определения поверхности окиси и закиси меди при их совместном присутствии несколько относительны. [c.175]


    В отличие от катионов щелочных и щелочноземельных металлов, ионы тяжелых металлов — платины, золота, серебра, ртути, меди и т. п., как известно [15—20], хорошо адсорбируются кислородным углем, несмотря на положительный заряд его поверхности. Это объяснялось [17, 20, 21] образованием труднорастворимых гидроокисей, карбонатов и основных солей в норах угля. Как показали, однако, исследования одного из авторов [19], ионы многих тяжелых металлов могут адсорбироваться углем не только из нейтральных, но и из сильно кислых сред, в которых образование указанных труднорастворимых соединений, очевидно, невозможно. Отсюда можно заключить, что сильно поляризующиеся катионы тяжелых металлов, действительно, адсорбируются кислородным углем как таковые, а это, учитывая положительный заряд поверхности названного сорбента, возможно, очевидно, только в том случае, если адсорбция этих [c.114]

    Адсорбция. Изучалась адсорбция протактиния на различных твердых сорбентах кварцевом стекле, металлах (платине, золоте, меди, железе, никеле, олове) и фторопласте-4 [c.173]

    Наряду с рассмотренными выше силами в адсорбции большую роль могут играть и силы химического средства, под действием которых между молекулами адсорбата и поверхностью образуются химические связи. Такой процесс называется химической адсорбцией или хемосорбцией. Он аналогичен химической реакции и поэтому характеризуется высокой специфичностью (избирательностью), т. е. для определенного адсорбата количество хемосорбиро-ванного вещества очень чувствительно к химической природе адсорбента (хемосорбента). Например, оксид углерода СО удерживается на поверхности меди и платины сравнительно слабо, о чем можно судить по незначительному сдвигу частоты колебаний молекулы СО в инфракрасном спектре поглощения. В случае ни- [c.317]

    Способностью поглощать водород обладают все металлы. Количество поглощенного водорода и характер связи водорода с металлом значительно отличаются для разных групп металла. Для таких металлов, как железо, никель, кобальт, серебро, медь, алюминий, платина, часто придшняют термин растворение пли окклюзия водорода в металле. Растворению или окклюзии, как уже было сказано, обязательно предшествует процесс активированной адсорбции и диссоциации молекул водорода на атомы. Зависимость окклюзии водорода различными металлами от температуры сложная. В одних металлах растворимость водорода с увеличением температуры возрастает, тогда как в других — снижается. Для ряда металлов (лтр-ганец, молибден) наблюдаются экстремальные точки па кривой растворимости водорода от температуры. Поэтод1у можно полагать, что знак температурного коэффициента растворимости в том или инод металле зависит от определенного интервала температур. [c.248]

    Магнус и Киффер [94] утверждают, что хотя вода крайне трудно удаляется из адсорбента, но, повидимому, это не отражается сильно на теплоте адсорбции. Тейлор, Кистяковский и Перри [143], измеряя дифференциальные теплоты адсорб ции кислорода на платиновой черни, освобожденной от других адсорбированных веществ, например воды или водорода (с которым кислород может реагировать химически), получили величину, уменьшающуюся с 78 ООО до 3000 кал на граммоль при увеличении концентрации адсорбируемого вещества. С другой стороны, кривые Мэкстеда и Хэссида [99] указывали на постоянство дифференциальной теплоты адсорбции для меди и платины во всем диапазоне исследованных концентраций водорода. Эта теплота адсорбции приблизительно равна 33 ООО кал на граммоль водорода. [c.148]

    Экспериментсшьно установлено два типа связи водорода с медью,никелем, платиной, железом и вольфрамом [44,45]. При г-типе связи атом водорода заряжен отрицательно и расположен над поверхностным атомом металла на расстоянии 0,25 нм при 5-типе атом водорода заряжен положительно и находится между ионами металла на глубине -V 0,05 нм. При адсорбции 5-типа водород ведет себя, подобно растворенному водороду в решетке металла. Большое влияние на проникновение водорода в металл оказывают стимуляторы или промоторы наводороживания. К основным стимуляторам относятся гидриды элементов И / , Аз, 5в, В / и и /5, 5е, Те/ групп, которые увеличивают долю внедряющегося в сталь водорода 43,46,47]. Только гидриды перечисленных элементов проявляют катализирующее действие. Слои элементных Аз, 5в, 5е и Те, которые в определенных условиях осаждаются на поверхность металла, тормозят проникновение водорода, т.е. действуют как ингибиторы наводороживания 43]. Катализирующее действие гидридов может достигаться за счет торможения рекомбинации или в результате облегчения разряда в обоих случаях растет степень заполнения поверхности адсорбированными атомами водорода. Предполагается, что промотирующие гидриды снижают энергию активации процесса Н, уменьшая силы сцепления между атомами металйа 47]. На рис. 2 показана относительная эффективность новодороживания стальных катодов под действием некоторых элементов, введенных в количестве 10 мг в 10%-ный раствор серной кислоты [46]. Как [c.17]

    Адсорбция водорода и азота металлами изучалась новым и интересным методом Гэйджером (Gauger) Вольфенденом и наконец Кистяковским Они измеряли ионизационные потенциалы водорода и азота, адсорбированных различными металлами. Техника этих измерений описывается в другом месте настоящей книги. В случае адсорбции азота железом, никелем, медью и платиной Кистяковский получил переломы ионизационной кривой, приблизительно при 11 V. Этот потенциал он приписывает адсорбированному азоту. Имеется некоторая неясность, соответствует ли этот перелом азоту, адсорбированному в виде атомов или в виде активированных молекул. К1 стяковский склонен предполагать первое. Е более поздней работе Тейлор и Кистяковский указывают, что по интенсивности ионного тока при И V вышеуказанные металлы располагаются в таком порядке железо, никель, медь, платина. Это соответствует порядку их активности и по отношению к распаду аммиака при высоких температурах. [c.124]

    В последнее время были достигнуты значительные успехи в непосредственном определении адсорбции органических соединений на твердых металлах благодаря использованию различных видоизменений метода радиоактивных индикаторов [4—7]. Этот метод был применен для изучения адсорбции этилена на платине [275, 276] тиомочевины на золоте [277] бензола, нафталина, фенантрена, циклогексана, каприловой и каприновой кислот на золоте [278] н-дециламина на никеле, железе, меди, свинце и платине [194] нафталина на железе, никеле, меди и платине [279], а также н-гек-силового спирта на платине [280]. Метод позволяет определить зависимость адсорбции от потенциала и концентрации. [c.244]

    Однако экспериментальный материал, приведенный в диссертации, не убеждает, что проверка бьша произведена безукоризненно не указывается, например, происхождение и метод идентификации оитически активного кварца оптическая активность продуктов не исследовалась спектрополяриметрически. В опытах в работе [795а] суспензия как d-, так и 1-кварца, и даже порошок Стекла пирекс обнаруживали оптическое вращение одного знака (—0,05 ). Поэтому результаты этой работы нельзя считать убедительными. Действительно, в опытах по адсорбции и катализу на кварце никогда н наблюдались значительные величины оптического вращения и в ряде работ принимались все возможные меры для устранения экспериментальных погрешностей в измерении малых величия онтического вращения. В то же время нужно иметь в виду, что рсе работы проводились сравнительно давно, когда спектрополяриметрический метод еще не получил своего развития и все измерения оптического вращения проводились при 589 ммк. В некоторых случаях результаты были действительно сомнительны (что отмечается в тексте), но в целом нет оснований отвергать весь известный материал, накопленный в этой области. Станкевич [105] в 1938 г. повторил опыты по каталитическому асимметрическому разложению рацемического бутанола-2 и расширил круг исследуемых веществ, применив другие рацемические спирты — 3-метил-гептанол-3 и ментол. Использованные катализаторы (медь, никель, платина) содержали 100—200-атомарные слои металла на кварце и обладали большей специфичностью, чем катализаторы с моно-атомарным покрытием. Это противоречило прежним данным Шва- ба [102—104] и теоретическим представлениям. Значительная величина оптического вращения катализата, равная —0,26°, получена при разложении рацемического З-метилгептанола-3. При разложении бутанола-2 на катализаторе медь на нравовращаю- [c.258]

    В работе [121] было отмечено влияние отжига на адсорбцию акридина из водных растворов на меди. Адсорбция акридина на отожженном металле была меньше, чем на металле, не подвергнутом отжигу. Снижение адсорбции после отжига авторы объясняли оплавлением отдельных шероховатостей поверхности. Влияние деформации и термической обработки платины на адсорбцию серной кислоты было обнаружено Балашовой и Жмакиным [122]. Адсорбция серной кислоты на пластинах платины, подвергнутых деформации на изгиб, или на платиновой проволоке, подвергнутой растяжению, была в 10—20 раз больше, чем на отожженном металле. Авторы обнаружили, что отжиг существенно снижает адсорбцию, если прокаливание проводится при 700—800° С. При зтих температурах рекристаллизация платины идет с большой скоростью. [c.211]

    Существование этого изменения характера адсорбции подтверждается экспериментальными данными. Мейер [252] проводил бомбардировку ионами калия нитей платины, меди и алюминия, покрытых адсорбированным натрием, и во время происходящего при этом испарения натрия наблюдал в спектре линию О натрия. Ионы натрия, которые десорбируются, по-видимому, под влиянием бомбардировки ионами калия, во время испарения превращаются в атомы, проходя через несколько возбужденных состояний, вызьпзающих испускание света. В том случае, когда количества адсорбированного натрия малы, испускание света не наблюдается. Оно становится более заметным при увеличении количества адсорбированного натрия, затем проходит через максимум и, наконец, снова уменьшается в присутствии более значительных количеств адсорбированного натрия. Это явление объясняется тем, что при низких значениях О натрий освобождается с поверхности в виде ионов, при более высоких значениях эти ионы нейтрализуются, переходя в атомы, а при еще более высоких значениях 6 натрий находится на поверхности в виде атомов, которым нет необходимости нейтрализоваться при десорбции. [c.138]

Рис. 3.35. Я гейка для изучения адсорбции ионов меди на гладкой платине Рис. 3.35. Я гейка для изучения <a href="/info/172273">адсорбции ионов меди</a> на гладкой платине
    Используя метод УФЭС, Спайсер и др. [52] наблюдали изменение электронной структуры (валентной связи) поверхности для МоЗг, Си, Р1 и 51 при физической и химической сорбции Оа, СО, Нг и N2. Физическая адсорбция приводила только к незначительным изменениям электронной структуры, но при хемосорбции происходило значительное падение поверхностной эмиссии, что объяснялось гибридизацией орбиталей поверхности и адсорбированного газа. Было подтверждено, что в случае платины это падение эмиссии указывает на орбитали металла, участвующие в образовании связи. Сообщалось, что для меди эта гибридизация была способна образовывать новые орбитали, расположенные в пределах или выше -зоны. Было бы интересно применить для этих результатов последние теории для хемосорбции, особенно теорию Шрейфера [53, 54]. [c.160]

    По данным Трепнела [95], процесс хемосорбции кислорода на различных металлах и при различных температурах протекает так быстро, что кинетику процесса не удается измерить это указывает на очень малую величину энергии активации хемосорбции. После быстрой хемосорбции начинается медленное поглощение кислорода металлом. Такое поглощение для никеля, меди и некоторых других металлов сопровождается образованием окислов этих металлов. Для благородных металлов (платина, серебро) медленный процесс поглощения приводит к растворению кислорода в приповерхностных слоях. Калиш [74] показала, что при адсорбции кислород внедряется в приповерхностные слои платины в количестве, равном десяткам монослоев. В последнее время Темкин и Кулькова [75] исследовали сорбцию кислорода на пористом серебре при 250 и пришли к выводу, что через 185 час. в металле растворяется до пяти монослоев кислорода. Таким образом, кислород легко внедряется в нриповерхностные слои благородных металлов (платина, серебро), резко изменяя электронные свойства поверхности. [c.33]

    Теория де Бура — Цвиккера подверглась суровой критике Брунауэра [18], основное возражение которого заключалось в том, что эффект поляризации недостаточно велик. Это привело к почти полному забвению поляризационной теории. Однако некоторые новые данные показывают, что в этой теории все же имеется рациональное зерно. Бьюиг и Зисман [64], в частности, показали, что адсорбция н-гексана на различных металлах приводит к значительному изменению поверхностного потенциала АУ, соответствующему довольно большому индуцированному дипольному моменту порядка 0,3 дебая (В). Согласно-расчетным данным, для индуцирования такого диполя на молекулах н-гексана на поверхности должно быть поле напряженностью около 10 В/см. Значительное изменение АУ обнаружено и при адсорбции инертных газов на металлах [65]. Так, по данным Притчарда [66], при адсорбции ксенона на меди, никеле, золоте и платине при —183°С значение АУ меняется от 0,2 до 0,8 В, причем в момент завершения образования монослоя наклон зависимости АУ от V резко уменьшается. По мнению Бенсона и Кинга [67], адсорбция инертных газов на окиси алюминия в значительной мере определяется локальными электрическими полями. Поверхность графита, по-видимому, также характеризуется сильным полем, обусловленным разделением д-электронов и положительно заряженных атомов углерода. В последнее время получены спектроскопические данные (гл. XIII, разд. Х1П-4), свидетельствующие о значительной поляризации адсорбированных частиц. Как показано в разд. XIV-10, даже на поверхностях молекулярных кристаллов дисперсионным силам можно приписать только часть энергии адсорбции. Более того, на поверхностях, покрытых прослойками предварительно адсорбированных инертных веществ, потенциальное поле убывает почти экспоненциально. Таким образом, можно считать доказанным, что в общем случае адсорбция в первом слое больше определяется электростатическим поляризационным взаимодействием (уравнение (У1-38), гл. VI), чем дисперсионными силами. [c.463]

    На адсорбцию газов на платине и никеле может влиять ряд потенциально возможных поверхностных загрязнений. Прежде всего на поверхности образца может содержаться кислород, особенно если образцы в процессе обработки нагреваются на воздухе или в кислороде. Методами ДМЭ и оже-спектроскопии получены надежные данные о том, что, если образец, в частности массивная платина, допускает высокотемпературную обработку при удалении поверхностного кислорода газообразным водородом, образуется атомночистая поверхность [38]. Однако не весь кислород на поверхности платины реагирует одинаково легко. Так, при адсорбции кислорода на чистой поверхности поликристаллической платины при 195 К быстро адсорбируется около 95% общего количества, а остальная часть поглощается мед- [c.306]

    Для реакций изотопного обмена в молекулярном водороде и взаимодействия водорода с кислородом обнаружена сходная зависимость удельной каталитической активности от электронной структуры металла. Довольно резкий максимум удельной каталитической активности лежит у последних металлов VIII группы, т. е. соответствует почти полному заполнению -зоны. Завершение заполнения -зоны при переходе от никеля к меди и от платины к золоту приводит к резкому снижению каталитической активности. Эта зависимость обусловлена влиянием электронной структуры мета.дла на характер и энергию поверхностного взаимодействия с водородом. На металлах с незаполненной -зоной адсорбция водорода протекает с большой скоростью и, даже при низких давлениях, отвечает покрытию значительной части поверхности. При адсорб-ционно-десорбционном механизме обмена максимальная скорость реакции достигается при заполнении поверхности катализатора хемосорбиро- [c.134]

    Нами, совместно с В. А. Киселевым [7], изучен гомолитический обмен кислорода на металлах — серебре и платине и на катализаторах полупроводниках—пятиокиси ванадия и двуокиси марганца. Гомолитический обмен кислорода не наблюдается при низких температурах на платине, серебре и окислах — полупроводниках МпОг, V2O5, что, вероятно, указывает на отсутствие диссоциации кислорода на атомы. С повышением температуры скорость гомолитического обмена увеличивается, а следовательно, возрастает число атомов кислорода на поверхности. Даже при 250—400° скорость гомолитического обмена меньше скорости десорбции кислорода, что указывает только на частичную диссоциацию адсорбированного кислорода. В своем докладе на Международном конгрессе по катализу Де Бур [8] указал, что при адсорбции кислорода на серебре и меди весьма вероятно существование иа поверхности молекулярных ионов кислорода О2 , которые легко могут образовать с органическими веществами гидроперекиси. [c.411]

    Близкие значения удельной каталитической активности для платины и никеля, а также резкое падение активности нри переходе от никеля к меди и от платины к золоту свидетельствуют о зависимости каталитической актх вности от числа неспаренных электронов в -зоне металла. Число неснаренпых электронов в -зоне влияет на энергию связи хемо-сорбированного водорода с металлом. На металлах с незаполненной -зоной (железо [21], никель [22]) адсорбция водорода протекает с большой скоростью и даже при низких давлениях отвечает покрытию большей части поверхности. При адсорбционно-десорбционном механизме обмена максимальная скорость реакции соответствует заполнению поверхности хемосорбированным водородом приблизительно наполовину. Поэтому падение энергии связи водорода с поверхностью металла, соответствующее уменьшению числа неспаренных электронов в -зоне в ряду Ге—Со—N1, приводит к увеличению удельной каталитической активности. При переходе к следующему металлу — меди — с заполненной -зоной энергия связи водорода с поверхностью металла и скорость хемосорбции резко уменьшаются. [c.74]

    Одновременно с Боресковым выступил японский химик Кван [59] с работами, отрицающими во многих случаях активные центры. Основываясь на статистическом анализе изотерм адсорбции водорода на никеле, кобальте и платине с заранее известной поверхностью, а также на результатах сопоставления найденной из опыта скорости адсорбции на меди с вычисленной по теории абсолютных скоростей реакций, Кван пришел к следующему выводу Поверхность целого ряда металлических катализаторов является однородной в отношении хемосорбции при условии, что исследуемые образцы при приготовлении были очень тщательно восстановлены, а в дальнейшем предохранены от попадания ка них каких-либо отравляющих веществ . Было показано таюке, что и поверхность окисных катализаторов типа шпинели представляет собой совокупность мест с однородной активностью . Уменьшение теплот адсорбции при определенных степенях заполнения Кван 0 бъя сняет не неоднородностью поверхности, а взаимным отталкиванием адсорбированных на однородной поверхности атомов водорода .  [c.156]

    Используя при изучении адсорбции паров воды микровесовой способ, основанный на применении крутильных равноплечных весов, изготовленных из стеклянного капилляра, было установлено, что на меди и железе при Н 100% образуются пленки толщиной в 25—30 молекул, а на платине они достигают 30—35 молекулярных слоев [15]. [c.254]

    Элементарный астатин. Астатин, получаемый путем бомбардировки пластинки металлического висмута а-частицами, отделяется от висмута при температуре плавления последнего (271° С) испарением в вакууме (или в токе гелия). При этом он конденсируется на холодной поверхности стекла в форме невидимой радиоактивной пленки. Полоний, который может образоваться в результате бомбардировки висмута дейтронами, при этих условиях испаряется в незначительной степени. Элементарный астатин легко испаряется со стеклянной поверхности при комнатной температуре. Поэтому осадок астатина, полученный при первой возгонке, может быть вновь возогнан и сконденсирован на другой охлажденной поверхности. В результате можно выделить радиохимически чистый астатин, не содержащий носителя. Пары элементарного астатина характеризуются избирательной адсорбцией на чистых металлических поверхностях в высоком вакууме (астатин хорошо адсорбируется при комнатной температуре на платине, серебре и золоте и плохо — на никеле и меди). [c.165]

    Подавляющее большинство классических катализаторов, содержащих тяжелые металлы I, II и VIII групп периодической системы (железо, платину, цинк медь и др.) и успешно применшопщхся для дегидрирования спиртов и нафтенов, для процесса получения изопрена оказались непригодными, так как при высоких температурах вызывали крекинг углеводородов [10, 41]. Основные усилия исследователей были направлены на выявление подходяхцих окисных катализаторов, обладающих более мягким действием. Уже в 30-х годах Тейлором с сотрудниками, исследовавшими адсорбцию водорода и других газов окислами металлов при высоких температурах, было показано, что наиболее активными являются окислы хрома и марганца [42]. К аналогичным выводам пришли позднее Толсто-пятова и Баландин [43], рассматривавшие активность и селективность окисных катализаторов дегидрирования в зависимости от энергий связи катализатора с водородом и углеродом. [c.113]

    Опытные данные показывают, что наибольшей каталитической активностью и разнообразием каталитического действия обладают металлы больших периодов системы Д. И. Менделеева. Это в основном металлы I, VI, VII и VIII групп медь, серебро, хром, молибден, вольфрам, уран, железо кобальт, никель, платина, палладии и др. Все эти металлы являются переходными элементами с незавершенной -оболочкой и обладают рядом свойств, способствующих каталитической активности переменной валентностью, склонностью к комплексообразованию, сравнительно невысокой работой выхода электрона и т. п. Особенно велика каталитическая активность металлов, у которых сумма (1- и х-электронов выше, чем число электронов, участвующих в металлической связи, так как наличие неспаренных электронов на внешних с1 и 5-орбиталях особо выгодно для поверхностных взаимодействий. В приближенном рассмотрении катализ на металлах основан на активированной адсорбции (хемосорбции) реагентов поверхностью катализатора, которая сопровождается акцептор но-донорными переходами электронов в -оболочку мета лла и в обратном направлении, в зависимости от типа реакций. Однако нельзя считать, что этими переходами исчерпывается вся сущность каталитического акта. [c.244]

    Применение в качестве сорбентов металлов весьма суш ест-венно для выяснения механизма адсорбции Р 276-283 ] Изучение сорбционного поведения америция на металлах производилось Стариком и сотр. Р ] в водных и водно-этанольпых растворах. В качестве сорбентов использовались платина, медь, никель, алюминий, золото, серебро. [c.199]

    S факторов, а не просто от тесного сближения газообразных молекул jxpjo с другом. Такая точка зрения была ясно выражена Лэнгмю-ром " в 1916 г., который показал, что так называемая физическая адсорбция газов такими веществами, как древесный уголь, силикагель, слюда и т. д., должна рассматриваться как следствие вторичных валентных сил, в то время как химическая адсорбция , как например кислорода платиной и вольфрамом, водорода медью, никелем и т. д., должна считаться следствием действия сил первичной валентности. Бентон назвал эти типы адсорбции соответственно первичным и вторичным. [c.122]

    Вообще говоря, электродный потенциал, повидимому, не очень сильно зависит от материала электрода. Так, например, потенциалы осаждения ThB (свинца) на золоте, серебре и меди совпадают [35, 6]. Однако иногда наблюдались и различия, в частности с электродами из тантала и платины [7, 21], но эти исключения, возможно, вызваны вторичными явлениями образованием препятствующего осаждению слоя окиси на поверхности тантала или образованием сплава с платиной, который, наоборот, способствует осаждению. Это значит, что сцепление осаждающихся атс ов с различными поверхностями одинаково сильно. Обзор попыток объяснения этого загадочного результата был сделан Хайсинским [33, 35], который сам стоит на той точке зрения, что для наиболее активных центров на поверхности электрода, т. е. тех центров, которые определяют электродный потенциал, работа выхода (т. е. энергия, требуемая для того, чтобы извлечь из поверхности необходимый для нейтрализации иона электрон) может равняться свободной энергии адсорбции адсорбированного на электроде нейтрального атома с обратным знаком. Эта гипотеза основана на некоторых результатах [49], относящихся к адсорбции паров цезия на вольфраме. [c.32]


Смотреть страницы где упоминается термин Медь адсорбция платиной: [c.131]    [c.77]    [c.77]    [c.310]    [c.81]    [c.102]    [c.82]    [c.178]    [c.243]    [c.129]    [c.148]    [c.590]    [c.754]   
Структура металических катализов (1978) -- [ c.162 , c.441 ]




ПОИСК







© 2025 chem21.info Реклама на сайте