Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кофакторы и коферменты

    Регенерация кофакторов (коферментов) [c.138]

    Существует обширная группа ферментов, активность которых проявляется только в присутствии определенных соединений небелковой природы. Эти соединения называются кофакторами. Кофакторами могут быть, например, ионы металлов или органические соединения сложного строения — их обычно называют кофер-ментами. В большинстве случаев связь между коферментом и белком слабая и кофермент можно отделить от белка весь комплекс в целом есть холофермент, а белок (лишенный активности) без кофермента называют апоферментом. [c.356]


    Хотя родоначальные гетероциклические соединения не встречаются в природе, их производные широко распространены и имеют немаловажное значение. Никотинамид (амид никотиновой кислоты) и пиридоксаль (витамин Вб) являются производными пиридина и относятся к витаминам группы В. Никотинамид — важная составная часть коферментов NAD и NADP (разд. 19.3), в то время как пиридоксальфосфат — кофактор, необходимый для декарбоксилирования и трансаминирования аминокислот. Пиримидиновые основания имеют большое зна- [c.308]

    Большая часть ферментов функционирует в комплексах с низкомолекулярными кофакторами, коферментами. Такой фермент в целом называется холоферментом, его белковая часть — ano-ферментом. Кофакторы разнообразны. К алифатическому ряду относятся дифосфаты углеводов и их аминопроизводных, участвующие в реакциях переноса фосфатных групп. Среди алифатических кофакторов отметим содержащие серу липоевую кислоту и глутатион. [c.48]

    Как видно из разд. 7.1, суть большинства химических реакций, протекающих в биологических системах, заключается в окислении или восстановлении одного или более реагентов. Однако особенно важный тип реакций, к которому, очевидно, относятся многие ферментативные реакции, не связанные с окислением — восстановлением,— это реакции, включающие перенос протона и сопровождающиеся общим основным или кислотным катализом. Естественно, многие из этих ферментативных превращений осуществляются с помощью небелковых кофакторов или коферментов. К таким коферментам относятся некоторые серосодержащие коферменты, среди которых тиаминпирофосфат (часто называемый витамином В1) имеет наибольшее значение. Сейчас уже очевидно, что механизм действия тиаминпирофосфата включает участие карбаниона в качестве промежуточного соединения. Правда, некоторые особенности этого процесса еще недостаточно изучены. [c.458]

    Кофакторы - чаще всего неорганические вещества, обычно металлы, так же, как и коферменты, участвуют в ферментативном катализе как необходимые составные части его например во многих реакциях с участием АТФ необходимо присутствие ионов магния  [c.41]

    Ферментативный анаэробный распад углеводов исследуют при инкубации тканевого гомогената или экстракта с субстратами гликолиза (гликогеном, глюкозой, а также с промежуточными продуктами гликолиза). О процессе судят по приросту конечного продукта анаэробного превращения углеводов — лактата или убыли субстратов. Отдельные этапы изучают при добавлении в инкубационную среду ингибиторов ферментов или удалении диализом кофакторов и коферментов, необходимых для определенных реакций процесса анаэробного превращения углеводов. [c.49]


    Кофакторы. Существуют ферменты, для проявления каталитических свойств которых необходимо присутствие кофакторов, например коферментов — производных витаминов, ионов металлов и др. [c.28]

    Приведенные примеры показывают, что многие основные реакции, протекающие в активных центрах ферментов, можно моделировать, используя взаимодействие обычных органических соединений в отсутствие белков. Роль последних заключается в узнавании субстратов н их ориентации, а сама химическая реакция часто осуществляется под действием кофакторов (коферментов), которые в свою очередь должны специфически узнаваться белками или ферментами. Последняя глава этой книги посвящена химическим аспектам функционирования коферментов и их строению. [c.20]

    КОФАКТОРЫ, КОФЕРМЕНТЫ И ВИТАМИНЫ [c.153]

    Эти хорошо установленные функции кофакторов (коферментов и простетических групп) служат очень поучительным примером для дальнейших исследований. Нет сомнений в том, что каталитическая роль отдельных функциональных групп аминокислотных остатков может быть выяснена с той же степенью точности. [c.32]

    Проферментами (коэнзимами) принято называть органические соединения небелковой природы, принимающие непосредственное участие в ферментативной реакиии (обязательные кофакторы). Коферменты по их функциям в процессе ферментативного катализа делятся на три группы  [c.132]

    УЧАСТИЕ КОФЕРМЕНТОВ И КОФАКТОРОВ В ФЕРМЕНТАТИВНЫХ РЕАКЦИЯХ [c.36]

    Катализируемая ферментом (ферментативная) реакция протекает на особом участке его белковой цепи такой участок называется активным центром фермента. Вещества, вступающие в реакцию на этом участке, называются субстратами. Кроме субстрата в ферментативной реакции могут участвовать и другие необходимые вещества, называемые кофакторами, или коферментами. Например, для действия фермента иногда необходимо присутствие иона Mg или другого металла или участие какой-либо небольшой органической молекулы. [c.450]

    Кофермент, или кофактор (разд. 25.3)-вещество, необходимое наряду с ферментом для протекания ферментативной реакции. [c.465]

    Кофермент — сложный органический кофактор, который в процессе каталитической реакции последовательно связывается с двумя разными ферментами. [c.239]

    Ферментами называются простые или сложные, состоящие из нескольких субъединиц белки, которые, будучи высокоспецифичными биокатализаторами, ускоряют наступление, равновесия химической реакции вне или внутри клетки, снижая энергию активации соответствующей реакции. Многие ферменты для осуществления каталитического действия помимо белкового компонента нуждаются в кофакторе, например ионе металла (Mg " ",, Mn " ", Со " "), и/или коферменте (простетическая группа). Коферменты действуют как переносчики электронов и функциональных групп атомов водорода, ацетильных, метильных и аминогрупп. Они часто идентичны с витаминами — необходимой составной частью пищи высших организмов. [c.398]

    Кофермент - сложное органическое соединение (кофактор), которое в процессе каталитической реакции последовательно связывается с двумя разными ферментами и участвует в химическом превращении. [c.549]

    Фрагменты ADP коферментов, таких, как АТР, FAD, NAD(P) или кофермент А, могут выполнять функцию, аналогичную функции пиримидиновой и пирофосфатной групп тиаминпирофосфата. Во всех изученных случаях (разд. 10.4) кофакторы присоединяются к своим коферментам в вытянутых конформациях, обеспечивая тем самым большое число взаимодействий с ферментами (рис. 11.4). Связывающая энергия, которая расходуется на специфические нужды других фрагментов кофермента, при этом всегда предоставляется фрагментом ADP. [c.279]

    Белки выполняют свою важнейшую — ферментативную функцию большей частью в комплексах с низкомолекулярными кофакторами и с простетическими группами. Последние связаны с белком валентными связями. Кофакторы, коферменты слабее связаны с апоферментом, т. е. с белком, и способны переходить от одной молекулы белка к другой. Это, впрочем, не всегда так, и отличие кофермента от простетической группы не вполне определенно. Фермент в целом, т. е. комплекс белковой части молекулы, именуемой ферментом, с коферментом, называется хо-лоферментом. Роль кофакторов в ряде случаев играют ионы металлов. [c.94]

    Роль переходных металлов в жизнедеятельности организмов в основном опеределяется их каталитическими свойствами. Многие ферменты представляют собой белок как таковой (т. е. являются полипептидами), тогда как другие состоят из белка (называемого в этом случае апоферментом ) и одной или более малых молекул или ионов (кофактор, кофермент или простетическая группа), которые вместе образуют весь фермент или холофермент. Кофермент может представлять собой органическую молекулу, например флавин, пиридоксаль, пнридиннуклеотид и др., соединенную с белком ковалентной связью, водородными связями или за счет вандерваальсовых взаимодействий. Кофактор может быть простым ионом металла, например ионом меди, или комплексом металла с одним или несколькими лигандами, например железопорфирины, кобальт-корриноиды. Если с ионом металла координируется один или несколько анионов аминокислот, то лигандом может служить сам белок, хотя это лиганд необычного типа. Очевидно, такие металлоферменты можно рассматривать как особую группу ферментов или как особую группу комплексов металлов и сопоставлять каталитическую активность ферментов, содержащих и не содержащих металл, или каталитическую активность комплексов переходного металла с белком и без белка. В рамках этого обзора мы не будем рассматривать металлоферменты, в которых ион металла выступает главным образом как льюисовая кислота (как в некоторых гидролитических ферментах [59]). Предметом обзора являются такие металлопротеины, которые сами претерпевают определенные (например, окислительно-восстановительные) превращения в ходе каталитического процесса и в которых в качестве лигандов принимают участие некоторые специфические компоненты, например молекулярный кислород, которые характерны для комплексов переходных металлов. [c.133]


    Различают два типа кофакторов — коферменты и простетические группы. Обычао кофактор относят к тому или к другому типу в зависимости от того, насколько легко разрывается его связь с ферментом. Но, по мнению Диксона и Уэбба [9], классификация по этому признаку не слишком удобна. Хотя некоторые простетические группы соединены с ферм-ентом ковалентными связями, встречаются и такие, которые связаны с белком более слабыми связями и наоборот, при обратимом связывании некоторых коферментов некоторыми ферментами положение равновесия сильно сдвинуто в сторону ассоциации. На самом деле имеется широкий спектр значений констант связывания , и только при крайних значениях они могут служить строгой основой классификации. [c.31]

    Многие оксидазы (монооксигеназы) являются РАО-зависи-мыми и катализируют окисление различных субстратов молекулярным кислородом. Следовательно, РАО-коферменты сиособны переносить кислород к органическому субстрату. Это еще одно из многочисленных свойств этого кофактора, отсутствующее у ЫАВ+. [c.417]

    Третий пиридиннуклеотидный кофактор (кофермент HI), необходимый для окисления цистеинсульфиновой кислоты в цистеиновую [c.195]

    Изучение белковых ферментных препаратов, а также дальнейшее углубление знаний о кофакторах - коферментах - составляло второе важнейшее направление энзимологических исследований. [c.180]

    Кофактор (кофермент) — небольшая молекула, необходимая для проявления ферментом активности обычно отличается от простетической группы тем, что слабо связывается с ферментом. [c.541]

    Клеточный метаболизм находится под контролем ферментов, а ферментам для проявления каталитической активности, как правило, необходимо особое вещество, или кофактор. В таких системах белковая часть фермента называется апоферментом, и она обычно неактивна. Кофактор — это или пон металла, или органическое вещество небелковой природы. Многие ферменты даже требуют присутствия обоих кофакторов. Прочно связанный кофактор называется простетической группой. Однако если органический кофактор начинает действовать только во время каталитического процесса, то он называется коферментом. Комплекс, образующийся в результате присоединения кофермента к апофер-менту, называется холоферментом (или, для краткости, ферментом).  [c.398]

    В качестве активаторов — кофакторов — в ферментах встречаются ионы железа, меди, цинка, магния, марганца, калия, натрия, молибдена. Роль коферментов в важнейших процессах, катализируемых ферментами, — именно в переносах водорода и электронов — играют сложные вещества, молекулы которых представляют сочетание нескольких звеньев. Из них особенно часто встречаются никотинамиддинуклеотид (НАД+), молекула которого состоит из аденина (органическое основание), d-рибозы фосфатной группы и никотинамида, и флавиновых нуклеотидов (ФМН и ФАД)  [c.356]

    К активаторам (кофакторам) ферментов относятся ионы многих металлов. Действие их проявляется различно они входят в состав простетической группы, облегчают образование ферментно-субстратного комплекса, способствуют присоединению кофермента к апо-ферменту и т. д. Присоединяясь по аллостерическому центру, они изменяют третичную структуру белковой молекулы, в результате чего субстратный и каталитический центры фермента приобретают конфигурацию, наиболее выгодную для осуществления их функций. [c.121]

    Наиболее распространенными молибденовыми кофакторами (МоСо) являются соединения молибдена с птерин-ен-дитиолат фрагментом как обязательным и некоторыми другими приходящими лигандами. Эти коферменты проявляют только гес1ох-свойст-ва с широким спектром физиологически активных соединений. Валентность его обычно 1 /-У1, координация — М-У. Основные химические связи, которые молибден образует — это сульфидные (как сайт-образующие) и связи разной кратности с атомом кислорода, участвующим в гес ох-реакциях (схема 13.13). [c.364]

    Важным представителем коферментов [Fe -Mo] металло-состава является молибден-феррум кофактор нитро-геназы — фермент, ответственный за азот-фиксацию атмосферного азота. [c.366]

    Пиридоксальфосфат идеально приспособлен для катализа реакции аминосоединений. Поэтому его обнаружение в роли необходимого кофактора гликогенфосфорилазы (гл. 7 разд. В, 5) вызвало удивление. Кофермент связан с фосфорилазой в основном так же, как и в случае трансаминазы (разд. Д, 6), но функция его не ясна [43]. Поразительным является тот факт, что, по имеющимся данным, 50% всего количества витамина Ве в организме находится в виде PLP в составе мышечной фосфорилазы [44]. Из исследований, проведенных на крысах с недостаточностью витамина Ве, следует, что PLP в фосфорилазе может служить резервным источником, значительная асть которого при недостаточности витамина Ве может расходоваться на другие цели. [c.222]

    Если PLP является специфичным кофактором, предназначенным для реакций с аминогруппами субстратов, то не может ли пиридоксаминфосфат (РМР) функционировать в роли кофермента в реакциях превращения карбонильных соединений Первый пример подобной функции РМР был обнаружен в реакции образования 3,6-дидезокси-гексоз, необходимых для синтеза антигенов поверхности бактериальных клеток [46] (рис. 5-8). Глюкоза (в форме цитидиндифосфатглюкозы, или DP-глюкозы) сначала превращается в 4-кето-б-дезокси-СОР-глюкозу. Ее превращение в 3,6-дидезокси-СОР-глюкозу требует пиридоксаминфосфат наряду с восстанавливающим агентом (NADH или NADPH)  [c.222]

    Если фермент содержит белковую часть (апофермент) и небелковую (кофактор или кофермент), то его называют холоферментом. Если фермент содержит только белковую часть, то его относят к простым, а если есть кофактор (неорганическая часть) или кофермент (органическое соединение) - сложным. Ферменты могут объединяться в сложные надмолекулярные комплексы, или мультиферменты. [c.28]

    Цитрат изомерпзуется в изоцитрат через промежуточную кислоту - цис -аконитовую. Затем идет изоцитратдегидрогеназная реакция образование а-кетоглутарата. Коферментом здесь является НАД , а кофактором - Mg . Это первая реакция в цикле, где образуется НАДН. Данная реакция играет регуляторную роль для всего цикла АДФ и НАД активируют, а АТФ и НАДН ингибируют данную реакцию. [c.83]

    Первым открытым нуклеотидным коферментом был никотин-амидадениндинуклеотид (NAD+, 10), который был обнаружен в начале XX века Харденом и Янчом как температурно-стабильный кофактор спиртовой ферментации. Вслед за развитием метода радиоактивных меток и техникой мягкого выделения (например, ионообменная хроматография) были обнаружены многие другие коферменты [7]. Они принимают участие в биологических реакциях окисления-восстановления, переноса групп, в реакциях синтеза полимеров. Эти коферменты будут обсуждены в настоящей главе более детально позднее. Другие же важные встречающиеся в природе эфиры фосфорной кислоты, такие как составляющие клеточных мембран (фосфолипиды и техоевые кислоты) или участвующие в биосинтезе природных соединений (таких, как терпены или стероиды) здесь обсуждаться не будут, но будут рассмотрены в других главах, посвященных природным продуктам. [c.134]


Смотреть страницы где упоминается термин Кофакторы и коферменты: [c.121]    [c.383]    [c.308]    [c.283]    [c.280]    [c.632]    [c.260]    [c.151]   
Смотреть главы в:

Основы биохимии в 3-х томах Т 1 -> Кофакторы и коферменты




ПОИСК





Смотрите так же термины и статьи:

Коферменты



© 2025 chem21.info Реклама на сайте