Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты трансаминирование

    Пиридоксальфосфат (139) — кофермент, участвующий в большом числе реакций а-аминокислот, включая рацемизацию, декарбоксилирование, трансаминирование и элиминацию или замещение у р- и 7-атомов углерода [112]. С точки зрения механизма псе эти реакции могут быть классифицированы как требующие [c.634]

    Катаболизм аминокислот с разветвленной цепью лейцина, изолейцина и валина—преимущественно осуществляется не в печени (место распада большинства остальных аминокислот), а в мышечной и жировой тканях, в почках и ткани мозга. Сначала все три аминокислоты подвергаются трансаминированию с а-кетоглутаратом под действием одного общего и специфического фермента—аминотрансферазы аминокислот с разветвленной цепью (КФ 2.6.1.42) (не содержится в печени) с образованием соответствующих а-кетокислот. Последующее окислительное декарбоксилирование а-кетокислот приводит к образованию ацил-КоА-производных. [c.459]


    Хотя родоначальные гетероциклические соединения не встречаются в природе, их производные широко распространены и имеют немаловажное значение. Никотинамид (амид никотиновой кислоты) и пиридоксаль (витамин Вб) являются производными пиридина и относятся к витаминам группы В. Никотинамид — важная составная часть коферментов NAD и NADP (разд. 19.3), в то время как пиридоксальфосфат — кофактор, необходимый для декарбоксилирования и трансаминирования аминокислот. Пиримидиновые основания имеют большое зна- [c.308]

    Печень, кроме того, обеспечивает сбалансированный пул свободных аминокислот организма путем синтеза заменимых аминокислот и перераспределения азота в результате реакций трансаминирования. [c.429]

    Для демонстрации реакций рацемизации, элиминирования и конденсации были проведены аналогичные модельные эксперименты. Тип реакции, протекающей в модельной системе, определяется экспериментальными условиями и природой субстратов. Так, реакции трансаминирования, приведенной на схеме (94), благоприятствуют пониженные значения pH (pH 5), а рацемизации— повышенные (pH 10). Использование в качестве аминокислоты серина, содержащего в р-положении уходящую группу, в присутствии соответствующего нуклеофила, такого как индол, приводит к неферментативному превращению серина в триптофан схема (96) . [c.639]

    Образующийся в мышцах КН (в результате расщепления аминокислот, дезаминирования аденозинмонофосфата и др.) вступает в р-цию с 1-оксоглутаровой к-той с образованием глутаминовой к-ты, в результате переаминирования к-рой (с участием пирувата) образуется аланин. Последний поступает в печень, где в результате трансаминирования с участием 1-оксоглутаровой к-ты образуется глутаминовая к-та. [c.409]

    Образование подобного комплекса в сочетании с некоторым оттягиванием электронов белковой частью молекулы фермента сопровождается лабилизацией одной из трех связей при а-углеродном атоме, благодаря чему аминокислота способна вступать в реакции трансаминирования (а), декарбоксилирования (Ь) и альдольного расщепления (с). [c.442]

    Учитывая известные фактические данные о механизмах обезвреживания аммиака в организме, можно сделать следующее заключение. Часть аммиака используется на биосинтез аминокислот путем восстановительного аминирования а-кетокислот по механизму реакции трансаминирования. Аммиак связывается при биосинтезе глутамина и аспарагина. Некоторое количество аммиака выводится с мочой в виде аммонийных солей. В форме креатинина, который образуется из креатина и креатинфосфата, выделяется из организма значительная часть азота аминокислот. Наибольшее количество аммиака расходуется на синтез мочевины, которая выводится [c.450]


    В обмене веществ реакция трансаминирования играет важную и разнообразную роль. От нее зависят такие процессы, как 1) биосинтез аминокислот (трансаминированием завершается синтез не менее чем одиннадцати аминокислот) 2) распад аминокислот (см. ниже) 3) объединение путей углеводного и аминокислотного обмена и 4) синтез некоторых специфических соединений, в том числе мочевины и у-аминомасляной кислоты. [c.446]

    Механизм реакции декарбоксилирования аминокислот в соответствии с общей теорией пиридоксалевого катализа (см. рис. 12.3) сводится к образованию ПФ-субстратного комплекса, представленного, как и в реакциях трансаминирования, шиффовым основанием ПФ и аминокислоты  [c.442]

    Важнейшим электрофильным катализатором, действующим в ферментативных системах, служит пиридоксаль. Он катализирует такие превращения а-аминокислот, как трансаминирование, декарбоксилирование, рацемизация, элиминирование и конденсация. Многие из этих реакций пиридоксаль катализирует и в отсутствие фермента, хотя и не столь эффективно и с меньшей специфичностью. [c.183]

    Пиридоксаль выполняет функции электрофильного ферментативного катализатора рацемизации а-аминокислот. Эта реакция также ускоряется в присутствии ионов металлов. Как можно заключить на основании схемы (7.32), рацемизация сопровождается реакцией трансаминирования. В системе пиридоксаль— аланин — алюминий рацемизация и трансаминирование конкурируют при всех значениях pH, но при pH 9,6 и 5 доминирующими становятся рацемизация и трансаминирование соответственно. Рацемизацию можно рассматривать просто как образование имина, который уже не располагает асимметрическим центром, а регенерация исходной аминокислоты должна приводить к рацемической смеси. [c.184]

    Характер проявляемой пиридоксальфосфатом каталитической функции определяется природой фермента, в сочетании с которым он действует. Так, из схемы (8.17) следует, что пиридоксальфосфат служит коферментом в таких процессах, как декарбоксилирование, трансаминирование, рацемизация и синтез аминокислот. [c.204]

    Незаменимость аминокислот для роста и развития организма животных и человека объясняется отсутствием способности клеток синтезировать углеродные скелеты незаменимых аминокислот, поскольку процесс ами-нирования соответствующих кетопроизводных осуществляется сравнительно легко посредством реакций трансаминирования (см. далее). Следовательно, для обеспечения нормальной жизнедеятельности человека и животных все эти 10 аминокислот должны поступать с пищей. [c.414]

    Основные типы реакций катаболизма аминокислот. Трансаминирование и дезаминирование ведут к образованию безазотистых углеродных скелетов аминокислот, а-кетокислот. Декарбоксилирование обеспечивает удаление карбоксильных групп и ведет к образованию аминов и затем после действия аминооксидаз — альдегидов. Окислительно-восстановительные превращения осуществляются с участием НАД-, НАДФ-, ФМН- и ФАД-зависимых ферментов. Введение гидроксильных групп происходит с помощью гидрокси-лазных ферментативных систем микросомального окисления разрыв ароматических колец — с помощью диоксигеназных ферментативных систем. Перенос одноуглеродных групп требует активной формы фолиевой кислоты. [c.273]

    Кофермент А содержит активные SH-группы и катализирует реакции переноса ацильного остатка in vivo, в частности в биосинтезе жирных кислот. Пиридоксальфосфат катализирует реакции трансаминирования и декарбоксилирования аминокислот, в то время как тиаминпирофосфат участвует в метаболизме пентоз и в биохимических реакциях ос-кетокислот. [c.137]

    Роль трансаминаз и реакций трансаминирования в обмене аминокислот. Чрезвычайно широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим воздействиям, абсолютная стереохимическая специфичность по отношению к Ь-аминокислотам, а также высокая каталитическая активность в процессах трансаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот. Ранее было указано, что при физиологических значениях pH среды активность оксидазы Ь-аминокислот резко снижена. Учитывая это обстоятельство, а также высокую скорость протекания реакции трансаминирования, А.Е. Браунштейн выдвинул гипотезу о возможности существования в животных тканях непрямого пути дезаминирования аминокислот через реакции трансаминирования, названного им трансдезаминированием. Основой для вьщвижения этой гипотезы послужили также данные Г. Эйлера о том, что в животных тканях из всех природных аминокислот с высокой скоростью дезаминируется только Е-глутаминовая кислота в реакции, катализируемой высокоактивной и специфической глутамат-дегидрогеназой. [c.437]

    Снижение концентрации а-кетоглутарата вызывает угнетение обмена аминокислот (трансаминирования) и гипоэнергетическое состояние (угнетение ЦТК). [c.235]

    Пиридоксальфосфат 8.9 (витамин Ве, руСНО) принимает участие во многих реакциях превращения аминокислот, включая рацемизацию, декарбоксилирование, трансаминирование, 3-за-мещение, элиминирование и конденсацию. [c.200]

    С.-кодируемая заменимая аминокислота, образуется в организме в результате трансаминирования и послед, де-фосфорилирования 3-фосфопировиноградной к-ты, участвует в биосинтезе триптофана и серосодержащих аминокислот, обратимо расщепляется на глицин и формальдегид, претерпевает дезаминирование, превращаясь в ш1рови-ноградную к-ту. Из С. в организме синтезируются этаноламин и холин. [c.325]


    Интересным подтверждением этих идей явилось наблюдение, что смена конфигурации аминокислоты [L- на D-) приводит к тому, что конформация (156), благоприятствующая уходу R, заменяется конформацией (157), способствующей потере Н и трансаминированию схема (100) . Перекрестную реакционную способность можно продемонстрировать на примере -серингидроксиметилазы последняя катализирует реакцию переаминирования D-аланина [125]. [c.642]

    В то же время алкилирование подобных иминов этилглоксилата схема (29) протекает с оптическими выходами выше 957о, если имин образует комплекс с карбонилом железа. Комплексообразование приводит к смеси диастереомеров, из которой выделяют преобладающий изомер (21) и обрабатывают его алкилбромидом [40]. Как и во всех реакциях трансаминирования, ведущих свое начало от остроумной схемы, предложенной Кори, оптический индуктор не регенерируется. Асимметрия получающейся аминокислоты достигается в результате его разрушения. [c.242]

    Можно вводить метку в а-положение аминокислоты путем декарбоксилирования производных а-ацетиламиномалоновой кислоты см. схему (7) в кислых растворах тритийсодержащего растворителя. Альтернативно, можно вводить метку в а-положение аминокислоты непосредственно в условиях, которые вызывают рацемизацию при а-С атоме, т. е. в сильно щелочных средах или при кипячении с уксусным ангидридом в уксусной кислоте. Однако для проведения многих биологических исследований лучще избегать применения [а- или Р- Н] меченных аминокислот. Обмен трития в этих положениях происходит через реакции трансаминирования схема (32) потеря трития, находящегося в р-положении аминокислот, используется в методе анализа трансаминаз. Обработка а.р-тритированных а-аминокислот с помощью оксидаз аминокислот или почечной ацилазы может приводить к существенной потере активности осторожность следует соблюдать и при использовании ферментов для разделения рацемических аминокислот, меченных радиоактивными изотопами. [c.249]

    Упомянутые выше модельные эксперименты привели Браунштейна и Снелла к предположению, что важнейшей чертой пири-доксальфосфат-зависимых реакций является образование имина (основания Шиффа) между а-аминогруппой аминокислоты и альдегидной группой пиридоксальфосфата. Это предположение получило широкое признание. В модельных экспериментах обычно использовался пиридоксаль, поливалентный ион металла (Са +, Ре +, А1 +) и подходящий субстрат — аминокислота. Типичная реакция трансаминирования, которая мол<ет быть проведена таким путем, изображена на схеме (94). Для достижения полноты реакции необходим большой избыток субстрата. [c.638]

    Механизм реакции трансаминирования. Общую теорию механизма ферментативного трансаминирования разработали советские ученые А.Е. Браунштейн и М.М. Шемякин. Одновременно подобный механизм был предложен американскими биохимиками Э. Снеллом и Д. Метцлером. Все трансаминазы (как и декарбоксилазы аминокислот) содержат один и тот же кофермент-пиридоксальфосфат. Для реакций трансаминирования характерен общий механизм. Специфичность трансаминаз обеспечивается белковым компонентом. Ферменты трансаминирования катализируют перенос ЫН,-группы не на а-кетокислоту, а сначала на кофермент пиридоксальфосфат. Образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям (лабилизация а-водо-родного атома, перераспределение энергии связи), приводящим к освобождению а-кетокислоты и пиридоксаминфосфата последний на второй [c.435]

    Ферменты, будучи белками, содержат большое число различных функциональных групп, обладающих кислотными, основными или нуклеофильными свойствами. Это уже обсуждалось в предыдущих главах, а также отражено в табл. 8.1. Однако в белках отсутствуют многие специфические группировки, необходимые для осуществления таких реакций, как окисление и восстановление, альдольная конденсация, трансаминирование, конденсация аминокислот, метилирование аминов, трансацили-рование и фосфорилирование. Вещества, которые в сочетании с белками обеспечивают протекание этих реакций, называются коферментами. Они также перечислены в табл. 8.1. [c.186]

    Реакция трансаминирования с участием ахирального пиридоксамина и а-кетокислоты приводит к образованию о,1-амино- шслоты. Если, однако, использовать оптически активный аналог пиридоксамина (Н- или 5-15-аминометил-14-гидрокси-5,5-диме-тйл-2,8-дитио[9](2,5)пиридинофан) в сочетании с ионами Zn +, то в результате трансаминирования а-кетокислоты превращаются в соответствующие п- или 1-аминокислоты. Эта система, изо- браженная на рис. 8.2, может служить хорошей моделью ферментативного трансаминирования. Наиболее высокий выход оптически активного изомера (23—61%) был достигнут в катализируемой хиральным пиридоксамином реакции трансаминирова- [c.204]

Рис. 8.2. Образование оптически активной аминокислоты путем трансаминирования оптически неактивной а-кетокислоты под действием хирального производного пиридоксамина. Из работы ТасЫЪапа У., Ando М., Kuzuhara Н Рис. 8.2. Образование <a href="/info/186795">оптически активной аминокислоты</a> путем трансаминирования <a href="/info/1108897">оптически неактивной</a> а-кетокислоты под <a href="/info/972533">действием хирального</a> производного пиридоксамина. Из работы ТасЫЪапа У., Ando М., Kuzuhara Н
    К амфиболичесюш процессам относят такие центральные пути обмена, как гликолиз, гликогенолиз, цикл трикарбоновых кислот, гексозомонофосфатный путь, трансаминирование аминокислот. [c.155]

    Доказано, что в животных тканях происходят взаимопревращения пиридоксальфосфата и пиридоксаминфосфата, в частности в реакциях трансаминирования и декарбоксилирования аминокислот (см. главу 12). [c.227]

    Необходимо подчеркнуть, что белковый обмен тесно интегрирован также с обменом углеводов, липидов и нуклеиновых кислот через аминокислоты или а-кетокислоты (а-кетоглутарат, оксалоацетат и пируват). Так, аспарагиновая кислота или аланин путем трансаминирования обратимо превращаются соответственно в оксалоацетат и пируват, которые непосредственно включаются в углеводный обмен. Эти данные, как и результаты опытов с введением животным меченых аминокислот и а-кето-кислот, сввдетельствуют о том, что в организме млекопитающих не существует вопреки классической теории М. Рубнера и К. Фойта обособленного и независимого эндогенного и экзогенного обмена вообще и белкового обмена в частности. [c.411]

    Общие пути превращения аминокислот включают реакции дезаминирования, трансаминирования, декарбоксилирования, биосинтеза и рацемизации. Рассмотрим подробно первые четыре реакции, имеющие значение для всех живых организмов. Реакции рацемизации характерны только для микроорганизмов открыты ферменты, катализирующие рацемизацию ряда аминокислот (Ала, Глу, Про, Мет, Лиз, Сер) и эпимеризацию оксипролина и а, -диаминопимелиновой кислоты. Физиологическая роль рацемаз микроорганизмов сводится, вероятно, к синтезу О-изомеров аминокислот для построения клеточной оболочки. [c.431]

    Реакции трансаминирования являются обратимыми и, как выяснилось позже, универсальными для всех живых организмов. Эти реакции протекают при участии специфических ферментов, названных А.Е. Браунштейном аминоферазами (по современной классификации, аминотранс-феразы, или трансам и назы). Теоретически реакции трансаминирования возможны между любой амино- и кетокислотой, однако наиболее интенсивно они протекают в том случае, когда один из партнеров представлен дикарбоновой амино- или кетокислотой. В тканях животных и у микроорганизмов доказано существование реакций трансаминирования между монокарбоновыми амино- и кетокислотами. Донорами ЫН,-группы могут также служить не только а-, но и 3-, у- и со-аминогруппы ряда аминокислот. В лаборатории А. Майстера доказано, кроме того, трансаминирование глутамина и аспарагина с кетокислотами в тканях животных. [c.435]

    А.Е. Браунштейном трансреаминированием. Сущность его сводится к восстановительному аминированию а-кетоглутаровой кислоты с образованием глутаминовой кислоты (реакцию катализирует БАДФ-зависимая глутаматдегидрогеназа, работающая в режиме синтеза) и к последующему трансаминированию глутамата с любой а-кетокислотой. В результате образуется Е-аминокислота, соответствующая исходной кетокислоте, и вновь освобождается а-кетоглутаровая кислота, которая может акцептировать новую молекулу аммиака. Роль реакций трансаминирования как в дезаминировании, так и в биосинтезе аминокислот может быть представлена в виде схемы  [c.438]

    Согласно гипотезе, получившей экспериментальное подтверждение, все или почти все природные аминокислоты (исключение составляет метионин) сначала реагируют с а-кетоглутаровой кислотой в реакции трансаминирования с образованием глутаминовой кислоты и соответствующей кетокислоты. Образовавшаяся глутаминовая кислота затем подвергается непосредственному окислительному дезаминированию под действием глутаматдегидрогеназы. Схематически механизм трансдезаминирования можно представить в следующем виде  [c.437]

    Поскольку обе реакции (трансаминирование и дезаминирование глутаминовой кислоты) являются обратимыми, создаются условия для синтеза по существу любой аминокислоты, если в организме имеются соответствующие а-кетокислоты. Известно, что организм животных и человека не наделен способностью синтеза углеродных скелетов (а-кетокислот), так называемых незаменимых аминокислот этой способностью обладают только растения и многие микроорганизмы. [c.437]

    Аспарагиновая кислота принимает непосредственное участие в орни-типовом цикле мочевинообразования, в реакциях трансаминирования и биосинтезе углеводов (гликогенная аминокислота), карнозина и ансерина, пуриновых и пиримидиновых нуклеотидов (см. главу 14), а также в синтезе М-ацетиласпарагиновой кислоты в ткани мозга. Роль последней, содержащейся в довольно высоких концентрациях в ткани мозга млекопитающих, пока не выяснена. [c.460]

    Количественному учету при белковой недостаточности в основном поддаются нарушения, связанные с обменом аминокислот. Одним из наиболее ранних нарушений азотистого обмена при белковой недостаточности является резкое снижение интенсивности процессов дезаминирования, трансаминирования и биосинтеза аминокислот, а также синтеза мочевины в печени. Оказалось, что эти нарушения обусловлены недостаточным синтезом и разрушением белковой части ферментов, катализи- [c.465]

    Следует подчеркнуть, однако, что значительно больший удельный вес имеет посттрансляционная химическая модификация белков, затрагивающая радикалы отдельных аминокислот. Одной из таких существенных модификаций является ковалентное присоединение простетической группы к молекуле белка. Например, только после присоединения пиридоксальфосфата к -аминогруппе остатка лизина белковой части—апо-ферменту—образуется биологически активная трехмерная конфигурация аминотрансфераз, катализирующих реакции трансаминирования аминокислот. Некоторые белки подвергаются гликозилированию, присоединяя олигосахаридные остатки (образование гликопротеинов), и обеспечивают тем самым доставку белков к клеткам-мишеням. Широко представлены химические модификации белков в результате реакции гидроксилирования остатков пролина, лизина (при формировании молекул коллагена), реакции метилирования (остатки лизина, глутамата), ацети-лирования ряда N-концевых аминокислот, реакции карбоксилирования остатков глутамата и аспартата ряда белков (добавление экстра-карбоксильной группы). В частности, протромбин (белок свертывающей [c.532]


Смотреть страницы где упоминается термин Аминокислоты трансаминирование: [c.380]    [c.109]    [c.392]    [c.693]    [c.205]    [c.435]    [c.435]    [c.436]    [c.454]    [c.456]    [c.549]   
Биологическая химия (2004) -- [ c.70 , c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Трансаминирование



© 2025 chem21.info Реклама на сайте