Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгеновские лучи природа

    Представления о симметрии очень важны как в связи с теоретическим, так и экспериментальным изучением строения атомов и молекул. Основные принципы симметрии применяются в квантовой механике, спектроскопии и для определения структуры при помощи дифракции нейтронов, электронов и рентгеновских лучей. Природа дает множество примеров симметрии, и это особенно очевидно, когда молекулы исследуются в равновесных конфигурациях. Для равновесной конфигурации атомы считаются фиксированными в их средних положениях. Когда существует симметрия, некоторые расчеты упрощаются, если ее принимать во внимание. Симметрией определяется также, может ли молекула быть оптически активной или иметь дипольный момент. Отдельные молекулы в отличие от кристаллических твердых тел (гл. 19) не ограничены симметрией, которой они могут обладать. [c.407]


    Рентген пришел к выводу, что когда катодные лучи наталкиваются на анод, возникает какое-то излучение, которое проходит сквозь стекло трубки, картон и воздействует на материалы, находящиеся вне трубки. Рентген переносил фотобумагу в соседнюю комнату, но и там она продолжала светиться до тех пор, пока была включена установка катодных лучей, т. е. открытое им излучение проникало даже сквозь стены. Это всепроникающее излучение Рентген назвал Х-лучами . (Со временем было установлено, что рентгеновские лучи по своей природе аналогичны свету, но обладают гораздо большей энергией.) [c.152]

    Поскольку гамма-лучи не отклонялись под действием магнитного поля, то было решено, что они подобны свету, а точнее — рентгеновским лучам, но обладают еще большей энергией. Бета-лучи отклонялись в магнитном поле, причем в том же направлении и на ту же величину, что и катодные лучи. Беккерель решил, что эти лучи состоят из быстрых электронов. Поэтому отдельные электроны, испускаемые радиоактивными веществами, получили название бета-частиц. Осталось еще определить природу альфа-лучей. [c.153]

    Явления дифракции и интерференции электромагнитного излучения (света, радиоволн, у-лучей, рентгеновских лучей и пр.) убедительно доказывают его волновую природу. В то же время электромагнитное излучение обладает энергией, массой, производит давление и т. д. Так, вычислено, что за год масса Солнца уменьшается за счет излучения на J,5-10 кг. [c.11]

    Дальнейшие исследования показали, что проникающая способность рентгеновских лучей зависит от толщины и природы материала, сквозь который они проходят. Они не могли пройти через такие плотные материалы, как свинец или кость. Сейчас известно, что рентгеновские лучи являются электромагнитным излучением высокой энергии (см. рис. У.1). Они образуются в рентгеновской трубке (рис. У.2), когда катодные лучи сталкиваются с атомами тяжелых металлов — например, серебра. [c.306]

    Волновая природа электронов была установлена, когда Дэвиссон и Джермер показали, что электроны дифрагируют на металлической фольге точно так же, как и рентгеновские лучи. Корпускулярно-волновой дуализм, обнаруживаемый электронами, присущ всем материальным объектам. Для больших объектов (например, бейсбольного мяча) корпускулярные свойства оказываются настолько преобладающими, что волновые свойства остаются незаметными. [c.376]

    Волновые свойства электрона обнаруживаются в упомянутом выше явлении дифракции электронов. Явление дифракции (см. курс физики) было хорошо известно для световых лучей, для рентгеновских лучей и других электромагнитных колебаний. Дифракция обусловливается волновой природой этих лучей. Поэтому существование дифракции электронов подтверждает наличие у них волновых свойств. Это явление, теоретически описанное де-Бройлем (1924), было экспериментально обнаружено Дэвиссоном и Джермером (1927). В СССР оно впервые было исследовано П. С. Тартаковским в том же году. [c.44]


    Рентгеновская дифракционная картина отражает состояние решетки в объеме образца, так как глубина проникновения рентгеновских лучей колеблется в га-висимости от природы образца и излучения от сотых до десятых долей миллиметра, а размеры элементарной ячейки, как правило, порядка нескольких ангстрем или десятков ангстрем (1 A = 10 м). Поэтому дифракционная картина поверхностного слоя практически полностью затемняется картиной от объема. [c.381]

    Различные экспериментальные наблюдения позволяют сделать вывод о том, что длительные периоды начала роста простой трещины и трещины серебра при низких значениях напряжения не просто вызваны уменьшением вероятности образования зародыша трещины в остальном не измененного материала. Природа изменений, происходящих на молекулярном уровне в процессе утомления образца, исследовалась разными авторами (например, [138, 143—147, 153]). Так, по затуханию колебаний торсионного маятника [138, 134—144] и методом ИК-поглощения [138] были исследованы молекулярная подвижность, взаимодействие молекул и их роль в поглощении энергии путем измерений плотности и методом рассеяния рентгеновских лучей [144—146], а также путем применения образцов с различной молекулярной массой [153] были исследованы упаковка молекул и дефектность структуры, а с помощью кинетики рекомбинации захваченных свободных радикалов [146] было исследовано изменение морфологии материала. Результаты, полученные с помощью этих различных экспериментальных методов, характеризуют упорядочение молекул, но еще не позволяют получить количественные значения пределов усталости. [c.295]

    После открытия Лауэ (1912 г.) дифракции рентгеновских лучей теория кристаллической решетки, которая начала развиваться еще в ХУП в., получила полное экспериментальное подтверждение. Методом рентгеноструктурного анализа были измерены межатомные расстояния и определено положение атомов в кристаллах. При этом было установлено, что структура кристаллов является плотнейшей упаковкой соответствующих структурных единиц и определяется прежде всего размерами этих структурных единиц. Согласно правилу Гольдшмидта (1927 г.), строение кристалла определяется числом его структурных единиц (ионов), отношением их радиусов, а также их поляризационными свойствами. Усиленное изучение связи состава и свойств твердых веществ с их кристаллической структурой привело к формированию новой отрасли химии — кристаллохимии. Кристаллохимические исследования, среди которых выдающееся значение имели работы Л. Полинга, А. В. Шубникова, Н. В. Белова, А. И. Китайгородского, помогли глубже понять природу твердых веществ, раскрыть закономерности, управляющие образованием кристаллических структур, в том числе таких сложных, как структуры силикатов и алюмосиликатов. [c.166]

    Волновой характер движения микрочастиц. Как известно, для описания электромагнитного излучения привлекают как волновые, так и корпускулярные представления с одной стороны, монохроматическое излучение распространяется как волна и характеризуется длиной волны Я (или частотой колебания v) с другой стороны, оно состоит из микрочастиц — фотонов, переносящих кванты энергии. Явления дифракции и интерференции электромагнитного излучения (света, радиоволн, Y-лучей, рентгеновских лучей и пр.) убедительно доказывают его волновую природу. В то же время электромагнитное излучение обладает энергией, массой, производит давление и т. д. Так, известно, что за год масса Солнца уменьшается за счет излучения на 1,5-101 т. [c.8]

    Горный хрусталь — наиболее чистая разновидность кварцевых минералов. Кристаллизуется в виде прозрачных шестигранных, иногда довольно крупных, кристаллов призматической формы. Возник как продукт кристаллизации из расплавов в пустотах и жилах пород. Крупные однородные прозрачные кристаллы горного хрусталя в природе встречаются редко. В кристаллах часто наблюдаются газообразные включения и красящие примеси, придающие им ту или иную окраску. Так, хризопраз — зеленого цвета, содержит до 2% никеля, аметист — фиолетового, окрашен соединениями марганца, дымчатый топаз окрашен органическими примесями, морион — черного цвета, цитрин — золотисто-желтый и др. При облучении рентгеновскими лучами горный хрусталь приобретает бурую или фиолетовую окраску. [c.28]

    Очень интересным представителем рассматриваемых. коллоидных систем является встречающаяся в природе голубая каменная соль. Причиной голубой окраски каменной соли является присутствие в кристаллах хлорида натрия ничтожного количества (0,0001 %) коллоидно диспергированного металлического натрия. Зидентопф еще в 1905 г. получил голубую каменную соль искусственно, нагревая кристаллы хлорида натрия в парах натрия. Сначала соль приобретала желтую окраску, соответствующую высокой степени дисперсности частиц натрия. Однако при дальнейших последовательных нагреваниях и охлаждениях происходила постепенная агрегация частиц натрия и окраска кристаллов становилась голубой. Опыты, проведенные позднее, показали, что искусственная голубая соль может быть получена и при действии на кристаллы хлорида натрия рентгеновских лучей и радиоактивного излучения. [c.396]


    Для изучения структуры коллоидных частиц наиболее приемлемым оказался метод использования отраженных рентгеновских лучей Дебая — Шеррера, широко применяемый для исследования мелкокристаллических материалов. Попадая на фотопленку, отраженные лучи оставляют следы в виде дифракционных линий — тонких искривленных полос. Размытость этих полос зависит от размеров частиц. Поэтому, измерив ширину дифракционной линии, можно рассчитать размер коллоидных частиц. Рентгенографический метод сыграл большую роль в изучении кристаллической структуры многих золей, природ- [c.395]

    Основная часть сведений о геометрии молекул — длинах связей, валентных и торсионных углах — получена с помощью рентгеноструктурного анализа. Теория этого метода основана на использовании сложного математического аппарата. Поэтому в нашем курсе будет дано лишь описание природы явления, лежащего в основе этого метода — дифракции рентгеновских лучей на кристаллических решетках. [c.159]

    Развитие экспериментальных исследований, особенно в области физики, в конце XIX и начале XX в., привело к ряду важных открытий (например, открытие радиоактивности элемента), доказавших сложную природу атома и определивших дальнейшие пути изучения его внутреннего строения. Открытие явления радиоактивности подтвердило наличие в атомах более простых частиц и возможность превращения атомов одних элементов в атомы других. Был открыт электрон и связанный с ним ряд явлений, как, например, поток свободных электронов в вакууме, возбуждение рентгеновских лучей при торможении потока электронов, испускание электронов накаленными телами (термоэлектронная эмиссия), фотоэлектрический эффект, давление света и др. [c.10]

    Если электронам свойственна волновая природа, то они должны проявлять свойства, характерные для движения волны (дифракцию и интерференцию). Как удалось показать Дэвиссону и Джермеру, в действительности поток электронов, проходя через кристаллическую решетку, претерпевает, подобно рентгеновским лучам, дифракцию (рис. 16). По расположению дифракционных колец измерили длину волн, которая оказалась в согласии с величинами, вычисленными по уравнению (1.37). [c.33]

    Суть идеи де Бройля заключалась в распространении уравнений, справедливых для фотона, на все частицы атомного мира. Импульс фотона p = m -=h l или p = hlK, где Я — длина волны. В 1922 г. Комптон показал на опытах, что рентгеновские лучи и электроны взаимодействуют так, что это соотношение выполняется, и таким образом истинная природа фотона уже не могла вызвать сомнения. Предположим, что уравнение (2.27) относится к любой частице — электрону, протону, нейтрону и т. п., тогда импульс р==ти можно определить, измерив массу т и скорость v частицы, а длину волны найти расчетным путем. Спрашивается, длину какой волны мы при этом находим На этот вопрос де Бройль не мог ответить. Однако если скорость v измерена, то значение X можно вычислить по уравнению [c.28]

    По общему принципу они родственны друг другу (основаны па эффекте дифракции), но каждый, конечно, имеет свои специфические черты, так как характер взаимодействия воли разной природы с атомами кристалла различен. Рентгеновские лучи рассеиваются электронами атомов, поток нейтронов — ядрами, а поток электронов — электромагнитным полем ядра и электронов. [c.47]

    Другой важный вид энергии — это излучение. Видимый свет, инфракрасное излучение, ультрафиолетовое излучение, рентгеновские лучи и радиоволны — все зто виды излучения. По своей природе они весьма близки (см. разд. 3.10, 3.12). [c.20]

    Метод дифракции рентгеновских лучей позволил получить данные о кристаллической структуре многих кристаллов, в том числе и молекулярных кристаллов. Значения межатомных расстояний дают информацию о природе связей между близлежащими атомами. Рентгеноструктурный метод стал весьма совершенным, и теперь его часто применяют для определения сложной молекулярной структуры веществ вместо традиционных химических методов, основанных на разложении веществ на более простые соединения. [c.643]

    Р. X. зародилась в 1895-96, первым наблюдаемым эффектом явилось почернение фотографич. пластинки в темноте под действием проникающего излучения (см Радиоактивность). Впоследствии была обнаружена способность лучей радия разлагать воду, стали появляться работы, посвященные хим действию излучения радона и др радиоактивных элементов, а также рентгеновских лучей на разл в-ва Интенсивное развитие Р х началось с 40-х гг. 20 в в связи с работами по использованию атомной энергин Создание ядерных реакторов и их эксплуатация, переработка и выделение продуктов деления ядерного горючего потребовали изучения действия ионизирующих излучений на материалы, выяснения природы и механизма хим превращений в технол. смесях, обладающих высокой радиоактивностью. При разработке этих проблем Р х тесно взаимодействует с радиохимией. [c.150]

    Их природа тождественна природе других электромагнитных волн, таких, как рентгеновские лучи, лучи видимо-434 [c.434]

    Дается систематический обзор современных результатов по дисперсионному — обычному и запаздывающему — взаимодействию в капиллярных системах. В качестве исходного для микроскопической теории используется представление о молекулярной природе капиллярных систем и о межмолекулярных силах. Последовательное молекулярно-статистическое описание капиллярных систем строится на большом каноническом ансамбле Г иббса. Для этого используется метод производящего функционала, позволяющий компактно и замкнуто вывести необходимые общие соотношения статистической механики. Решение основополагающей проблемы о влиянии среды на взаимодействие молекулярных объектов достигается как строгий результат исследования коллективных явлений в системах многих молекул. Этот результат формулируется в виде принципа взаимодействия на языке фундаментальных физических понятий, отражающих роль среды как посредника взаимодействия. С единой точки зрения принципа взаимодействия рассматривается широкий круг самых различных по своим масштабам ключевых задач теории капиллярных систем. Сюда относятся молекулярные корреляции в капиллярных системах молекулярная структура плоских, слабо и сильно искривленных поверхностных слоев взаимодействие макроскопических частиц. Используемые в принципе взаимодействия понятия реализуются в этих задачах как сжимаемости и адсорбции. Они и являются параметрами описания коллективных явлений, обусловленных влиянием среды. Особо рассматривается построение парного эффективного межмолекулярного потенциала по данным о рассеянии рентгеновских лучей. На протяжении всей статьи проводится сопоставление с альтернативным макроскопическим подходом, в котором вещество рассматривается не как состоящее из молекул, а как континуум, описываемый макроскопической характеристикой — диэлектрической проницаемостью. Это сопоставление касается не только расклинивающего давления пленки, на примере которого была первоначально сформулирована макроскопическая теория, но и большинства других результатов по дисперсионному взаимодействию [c.163]

    Это важное уравнение связывает расстояние между плоскостями в кристалле и углом, при котором отраженное излучение имеет максимальную интенсивность для данной длины волны Я, т. е. когда все волны рентгеновских лучей находятся в фазе. Если Я, больше 2с1, решения для п не имеется и дифракция отсутствует. Поэтому световые волны проходят через кристаллы без дифракции на атомных плоскостях. Если рентгеновские лучи дифрагируют под слишком малыми углами. Уравнение Брэгга не включает интенсивность различных дифрагированных пучков. Интенсивность зависит от природы атомов и их расположения в каждой элементарной ячейке. [c.573]

    В 1900 г. Виллард нашел третью компоненту излучения, испускаемого радиоактивными веществами, так называемые улучи. Эти лучи испускаются атомными ядрами в результате естествейных или искусственных превращений или вследствие торможения заряженных частиц, аннигиляции пар частиц и распадов частиц. ДлинЬ волн у-лучей большинства ядер, лежит в пределах от 0,0001 до 0,1 нм. у-Лучис энергией до 100 кэВ (мягкие у-лучи) ничем кроме своего ядерного происхождения не отличаются от характеристических рентгеновских лучей. Поэтому часто термин "ii-лучи применяют для обозначения электромагнитного излучения любой природы, если его энергия больше 100 кэВ. Фотоны, возт кающие в процессах аннигиляции и распадов, называют v-квантами. [c.102]

    Явление дифракции лежит в основе рентгенографического и эле <троиографи-ческого методов исследования. Рентгеновские лучи имеют ту же природу, что и лучи видимого сиета. Они отличаются меньшей длиной волн —10- нм). Для исследований с помощью рентгеновских лучей обычно применяют длины волн от 0,07 до 0,2 нм. Рентгеновские лучи образуются в рентгеновской трубке, когда влектроны, быстро двигаясь от катода, внезапно тормозятся, попадая на апод. От силы удара электронов об анод и от природы вещества анода зависят Boii Tua получающихся рентгеновских лучей. [c.252]

    Дифракционное рассеяние рентгеновских лучей под малыми углами характерно для ультрамикрогетерогенных систем с частицами аморфной структуры. Природа этого я1 ле1 ия аналогична дифракции видимого света малыми экранами и отверстиями, теория которой подробно рассматривается в следующем разделе, поспященном рассеянию света. Отличия состоят не только в размерах частиц и применяемых длин воли, а главное — в соотношениях между ними. Данный метод применим, если размеры определяемых частиц сравнимы или больше длин рентгеновских лучей. В связи с этим максимум рассеяния приходится па направление, совпадающее с направлением падающих лучей. Размер же области рассеяния, т. е. угол, при котором интенсивность рассеянных лучей нрактически равна нулю (Омзкс), тем меньше, чем больше рассеивающий объем. Эту величину можно оценить по соотношению [c.253]

    Явление дифракции электромагнитного излучения (света, радиоволн, у-- учей, рентгеновских лучей) доказывает волновую природу излучения. В то же время электромагнитное излучение обладает массой (производит давление), и его можно представить как поток частиц — фотонов. Иными словами, электромагнитное излучение проявляет как волновые, так и корпускулярные свойства. Луи де Бройль (1924 г.) показал, что движение любой микрочастицы можно рассматривать как волновой процесс частице массой т, движущейся со скоростью V, соответствует волна длиной [c.18]

    РЕНТГЕНОВСКИЕ ЛУЧИ — электро магнитные колебания весьма малой длины волн, возникающие при воздействии на вещество быстрыми электронами. Р. л. открыты в 1895 г. В. Рентгеном. Волновая природа Р. л. установлена в 1912 г. М. Лауэ, открывшим явление интерференции Р. л. в кристаллах. Это открытие явилось основой развития рентгеноструктурного анализа. Р. л. невидимы для глаза, обладают способностью вызывать яркую видимую флюоресценцию в некоторых естественных и в искусственно изготовляемых кристаллических веществах, они действуют на фотоэмульсию и вызывают ионизацию газов. Этими свойствами Р. л. пользуются для обнаружения, исследования и практического использования Р. л. Различают два типа Р. л. тормозное и характеристическое излучение. Тормозное излучение возникает при попадании электронов на антикатод рентгеновской трубки оно разлагается в сплошной спектр. Характеристические Р. л. образуются при выбивании электрона из одного из внутренних слоев атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внен)не-го слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов, с той лишь разницей, что структура характеристического спектра, в отличие от оптического спектра газов, не зависит от вещества, дающего этот спектр. Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в периодической системе элементов Д. И. Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Другой особенностью характеристических спектров является то обстоятельство, что каждый элемент дает свой спектр независимо от того, возбуждается ли этот элемент к испусканию в свободном состоянии или в химическом соединении. Это свойство является основой рентгеноспектрального йпализа. Р. л. широко используются в науке и технике. Высокая про- [c.213]

    Рентгеновские лучи представляют собой электромагнитные колебания, длина волны которых (10 —м) сравнима с линейными размерами атомов. Открытие рентгеновских лучей принадлежит В. Рентгену (1895), а их волновая природа была установлена спустя 17 лет М. Лауэ совместно с В. Фридрихом н П. Книппингом, которые обнаружили дифракцию (рассеяние) рентгеновских лучей на кристаллах. [c.113]

    Кристалл представляет собой систему, состоящую их двух взаимодействующих подсистем электронной и ядерной. В рассеянии излучений принимают участие обе подсистемы, однако, интенсивность рассеяния на каждой из них зависит от природы рассеиваемого излучения. Например, интенсивность потенциального рассеяния рентгеновских лучей на ядрах атомов (томпсоновское рассеяние) примерно в 10 раз меньше интенсивности, рассеянной электронными оболочками тех же самых атомов, поэтому в теории дифракции рентгеновских лучей рассеянием на ядрах пренебрегают. Известны некоторые изотопы, ядра которых как раз попадают в область длин волн, используемых в структурном анализе. Сечение взаимодействия таких ядер имеет резонансный характер и по величине может значительно превышать сечение взаимодействия излучения с электронными оболочками атома. [c.174]

    Еще одним примером семичленного цикла с некоторой степенью ароматического характера является тропой (38). В этой молекуле было бы возможно существование ароматического секстета, если бы два электрона связи С = 0 были бы смещены от кольца в сторону электроотрицательного атома кислорода. Действительно, тропоны — устойчивые соединения, а тропо-лоны (39) найдены в природе [72]. Однако измерения дипольных моментов, ЯМР-спектров и дифракции рентгеновских лучей показывают, что тропоны и трополоны представляют собой [c.71]

    Важнейшая особенность кристаллов, вытекающая из правильного расположения составляющих их частиц в пространстве, состоит в том, что свойства кристаллов могут быть различными в различных направлениях. Эта особенность называется анизотропией. Например, в направлении, в котором на единицу длины приходится большее число узлов решетки, чем на другом направлении, возможна и большая теплопроводность. Расстояния между узлами в кристаллической решетке суть межатомные (межионные или межмолекулярные) расстояния, которые зависят от размеров частиц. Эти расстояния определяют путем изучения дифракции рентгеновских лучей от кристалла. Это возможно благодаря тому, что прави ьные ряды частиц в кристаллах отражают излучение подобно микроскопической дифракционной решетке. В зависимости от природы частиц и типа химической связи кристаллы могут быть ионными, ковалентными, металлическими и молекулярными. [c.161]

    Милликен в 1911 г. измерил заряд электрона, исследуя состояние заряженной капельки масла, помещенной между пластинами конденсатора. Заряженная отрицательно капелька притягивалась к положительно заряженной пластине, находившейся сверху если заряд на капле отсутствовал, она опускалась измеряя скорость ее движения в известном поле, можно было вычислить и значение заряда. Время от времени значение заряда менялось, так как капля поглощала ионы, возникавшие в окружающем пространстве под влиянием облучения рентгеновскими лучами. Тогда производилось повторное измерение. Эти опыты дали удивительный результат. Было установлено, что в природе существует минимальный электрический заряд, равный заряду электрона. Количество электричества в любом теле может увеличиваться или уменьшаться толькс на число, кратное этому заряду. В опытах Милликена количество электричества в капле масла никогда не изменялось на значение,, меньшее, чем заряд одного электрона. [c.17]

    Однако вопрос о том, какие силы обеспечивают создание строгоупорядоченных органических молекул, иными словами, какова природа валентности, все еще оставался нерешенным. Подходы к решению этого вопроса открылись в связи с научной революцией, происшедшей на рубеже века в физике. В результате открытия радиоактивности, электрона, рентгеновских лучей атом предстал перед исследователями уже не прежним неизменяемым и неделимым шариком , а сложной динамической системой, в которой большую роль играют электрические силы. В 19П г. Э. Резерфорд выдвинул модель атома в виде тяжелого положительно заряженного ядра и движущихся вокруг него легких электронов. Через два года Н. Бор дал математическую обработку этой модели. [c.38]

    Из того как мы в нашем рассмотрении подошли к системе из 230 трехмерных пространственных групп, может показаться, что это совершенная система но так оно и есть на самом деле. Эта система была установлена очень давно, задолго до того, как рентгеновские лучи стали применяться для изучения строения кристаллов. Тот факт, что 230 трехмерных пространственных групп были полностью выведены независимо друг от друга Федоровым, Шёнфлисом и Барлоу, следует всегда рассматривать как великий научный подвиг. До сих пор не удалось найти ни одного кристалла, существующего в природе или же приготовленного искусственно, который не подходил бы к одной из этих 230 групп. [c.429]

    Указанная интерпретация фотоэффекта учитывает как волновые, так и корпускулярные свойства света. В настоящее время принято считать, что свет имеет двойственную корпускулярноволновую природу и что для каждого эксперимента следует пользоваться той моделью, которая приводит к более простой интерпретации. Так, комптоновское рассеяние рентгеновских лучей на электронах в твердом теле удобнее рассматривать как столкновение двух частиц фотона и электрона. Здесь нет противоречия свет есть свет, и только из сообрал ений удобства здесь используются такие привычные понятия, как волна и частица. [c.18]

    Лучи, испускаемые радиоактивными элементами, проникают в свинец на несколько сантиметров космические лучи имеют более короткую длину волны (а возможно, и другую природу) и проникают в землю на сотни метров. Радиоволны, характеризующиеся значительно большими длинами волн, не взаимодействуют с веществом, если оно не обладает проводимостью. Лауэ первый показал, что рентгеновские лучи имеют длину волны такого же порядка величины, как межатомные расстояния в кристаллах, и что эти расстояния MOHIHO вычислить из наблюдаемой интерференционной картины. [c.26]


Библиография для Рентгеновские лучи природа: [c.79]   
Смотреть страницы где упоминается термин Рентгеновские лучи природа: [c.38]    [c.114]    [c.50]    [c.23]    [c.224]    [c.656]    [c.585]   
Применение поглощения и испускания рентгеновских лучей (1964) -- [ c.18 , c.19 , c.43 , c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте