Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород также

    При сульфохлорировании парафинов отношение скоростей замещения первичного и вторичного атомов водорода также равно 1 3,25. [c.577]

    Фтористый водород также является хорошим катализатором алкилирования. В его присутствии можно употреблять пропилен с содержанием этилена, так как последний значительно более инертен. Например, прп алкилировании бензолом при комнатной температуре н нормальном давлении в присутствии фтористого водорода смесь, содержащая наряду с этаном и метаном 19% пропилена [c.268]


    Высокая кратность подачи водорода также является одним из ва (<нейших факторов регулирования теплового режима в реакционной зоне, так как для процессов гидропереработки остатков характерны высокие теплоты реакций. [c.88]

    Образование комплекса катализатора. Сильно непредельные соединения, образовавшиеся в результате реакции переноса водорода, включая олефины, дают с катализатором комплексы присоединения (так называемый нижний слой или осадок ). Хлористый алюминий превращается в красно-коричневую жидкость. При применении таких катализаторов, как серная кислота и фтористый водород, также образуются вязкие комплексы, окрашенные в цвета от красного до коричневого. [c.320]

    Исследование влияния технологических параметров процесса показало, что увеличение температуры может резко изменить соотношение реакций гидрокрекинга и изомеризации. Наиболее глубоко реакция изомеризации протекает при 320-380 °С. При более высоких температурах преобладающей становится реакция гидрокрекинга. Давление водорода также существенно влияет на претерпеваемые превращения. Гидроизомеризация наблюдается в преобладающей степени при давлении 5,0-7,0 МПа, более высокое давление приводит к усилению гидрокрекинга. [c.127]

    Кроме того, в воде присутствуют коны водорода, также способные к восстановлению  [c.555]

    Хлористый, бромистый и фтористый водород также активируют изомеризацию олефинов [1, 2]. Наиболее подробно исследовано [c.88]

    Большое влияние на ход процесса оказывает давление водорода. С его повышением нежелательные реакции в значительной мере подавляются. Выбор давления обусловлен целым рядом факторов, многие из которых взаимосвязаны. При этом учитывают необходимость обеспечить требуемую глубину гидрирования сырья, степень его расщепления и изомеризации, возможно большую стабильность работы катализатора, а также экономичность процесса. Обычно парафинистое и высокопарафинистое сырье перерабатывают под давлением до 10—15 МПа, а ароматическое или смешанного состава — при 15—20 МПа. Как и все гидрогенизационные процессы, гидрокрекинг осуществляется в присутствии больших избытков водорода. Увеличение количества циркулирующего через реактор водорода до определенных пределов (2000— 3000 об. на 1 об. сырья) способствует углублению реакций чрезмерное увеличение уменьшает длительность контактирования сырья с катализатором, ухудшает условия процесса и его экономические показатели. Малый расход водорода (менее 800 об. на 1 об. сырья) отрицательно сказывается на стабильности работы катализатора. Таким образом, выбор расхода водорода также основан на оценке ряда факторов. Промышленные процессы гидрокрекинга масляного направления обычно осуществляются при циркуляции в пределах 1000—2000 об. водорода иа 1 об. сырья. [c.312]


    На рис. 160 показана установка непрерывного действия, снабженная медной колонной диаметром 76,2 мм и высотой 9,14 м. Насадка выполнена в виде колец Рашига из проволочной сетки диаметром 1,6 мм. Установка автоматизирована и снабжена специальными аппаратами для электролиза кубовой жидкости, обогащенной Ю. Выделяющийся в виде газа изотоп вступает в реакцию с водородом, также образующимся при электролизе. В качестве конечных продуктов получают таким образом На 0 и В21 0. [c.232]

    Основные реакции, протекающие при гидроочистке, идут с выделением теплоты. Поскольку содержание примесей в сырье риформинга незначительно, процесс гидроочистки не сопровождается видимым повышением температуры газопродуктовой смеси, а потребление водорода также незначительно [с учетом его растворения в бензине и возможных потерь — не более 0,15% (масс.)]. [c.30]

    Простой крекинг углеводородов до получения углерода или частей углеводородов и водорода также имеет место при температуре около 800°С, особенно если углеводородное сырье внутренне нестабильно, например в случае высококипящих соединений. При достаточно высокой активности катализатора риформинга, ограничивающей отложение на нем кокса, реакции регазификации углерода (с помощью пара или двуокиси углерода), приведенные в табл. 23 и 24, позволяют сохранить чистоту и активность катализатора для последующего процесса высоко-тор примесей в сырьевом потоке и образование углерода из ле-температурного риформинга. Наличие отравляющих катализа-устойчивого или тяжелого сырья нарушают непрерывность процесса газификации данного типа. [c.93]

    Кислородная газификация тяжелых топлив — один из способов получения водорода — также может быть использована как основа одного из методов производства ЗПГ. При этом все сырье перерабатывается в низкокалорийный (искусственный) газ, который в свою очередь может быть использован для получения метана. Так как этот метод состоит из отдельных относительно простых технологических стадий, он недостаточно эффективен с теплотехнической точки зрения, поскольку выделяющееся в процессе метанизации тепло недостаточно полно утилизируется для собственных нужд отдельных стадий процесса, таких, как производство электроэнергии для разделения воздуха и получения кислорода. [c.138]

    Атомарный водород также достаточно быстро реагирует с молекулярным кислородом  [c.26]

    В ряде исследований показано, что порядок реакции (2) по водяному пару равен нулю [ 4, 10, 19], порядок реакции (3) по водороду также равен нулю [18, 20]. [c.50]

    Заметим, что расчет рекомбинации атомов I, когда третьим телом является водород, также дает результаты, резко отличающиеся от всех других [199]. Для реакций с участием более тяжелых частиц результаты расчета по ЕТ-механизму, как видно из табл. 12.2, согласуются с экспериментальными данными вполне удовлетворительно для приближенного расчета. Эти результаты находятся в соответствии с чисто химическими соображениями. В самом деле, когда продуктом ассоциации является более устойчивое соединение, [c.127]

    Процесс гидродеалкилирования осуществляли с рециркуляцией непревращенного сырья в соотношении свежее сырье рециркулирующий поток = 1 1. Нафталин выделяли кристаллизацией. В качестве рециркулирующего потока использовали маточный раствор, получающийся при выделении нафталина, и фракцию дистиллята, кипящую выше 230 °С. При близком выходе нафталина в термическом и каталитическом процессе в последнем случае выход бензина был на 10% больше (в расчете на сырье), а выход газа на 8% меньше расход водорода также был несколько меньше, чем в случае термического гидродеалкилирования. Эти данные свидетельствуют о наличии в исходном сырье значительного количества парафиновых и нафтеновых углеводородов, которые в жестких условиях термического процесса могут подвергаться деструкции. При гидродеалкилировании в аналогичных условиях сырья с большим содержанием бициклических ароматических углеводородов результаты могут оказаться благоприятнее для термического процесса. В каталитическом процессе получен бессернистый нафталин, в термическом — нафталин, содержащий тионафтен. [c.276]

    Образующийся в процессе водород также может реагировать с толуолом, т. е. протекает реакция гидродеалкилирования  [c.292]

    Водород также получают при коксовании углей, электролизе водных растворов кислот и щелочей. [c.97]

    Асфальтены. Асфальтены являются насыщенными полициклическими соединениями, содержащими, кроме углерода и водорода, также серу и кислород в ядре. По внешнему виду асфальтены представляют собой темно-коричневые или черные порошки, неплавкие и разлагающиеся при температуре выше 300° с образованием кокса и газов- [c.72]


    Количество образующегося метана и водорода также увеличивается с увеличением температуры пиролиза, в то время как процентное содержание ненасыщенных углеводородов в пределах 700—800 , достигнув своего максимума в 36% от суммарного исходного продукта, мало меняется. [c.107]

    Отметим, что с увеличением температуры необходимое количество энергии для перехода в возбужденное состояние атома водорода снижается [1]. Поэтому при более высоких температурах для возбуждения молекулы водорода также требуется значительно меньше энергии, а следовательно, меньшее число неупругих соударений. [c.36]

    Рассмотрим теперь водород и хлор. Эти два газа, соединяясь, образуют третий газ — хлорид водорода. При этом один объем водорода соединяется с одним объемом хлора, и вполне можно предположить, что молекула хлорида водорода состоит из одного атома водорода и одного атома хлора. Предполоя им теперь, что газообразный водород и газообразный хлор состоят из одиночных атомов, далеко отстоящих друг от друга, и что эти атомы соединяются попарно, образуя молекулы хлорида водорода, также далеко отстоящие друг от друга. Начнем со 100 атомов водорода и 100 атомов хлора. Эти 200 далеко отстоящих друг от друга частиц соединяются [c.59]

    Растворимость водорода также зависит от природы жидкой фазы и ее количества. С уменьшением плотности растворителя, ндпример в ряду дизельное топливо — керосин — бензин, растворимость водорода возрастает. Чем больше образуется при сепарации жидкой фазы, тем больше расходуется водорода на растворение. [c.21]

    Соляную кислоту получали в две стадии сжиганием водорода в хлоре в стальной двухконусной печи и абсорбцией хлористого водорода водой в абсорбционных колоннах. Газообразный хлор из цеха электролиза через регулирующий вентиль и измерительную диафрагму поступал в горелку печи. Водород, также поступающий из цеха электролиза, проходил последовательно водоотделитель, пламегаситель, регулирующий клапан, диафрагму, регулирующий вентиль и поступал в горелку печи синтеза, где смешивался с хлором. В день аварии перед пуском печи открыли верхнюю свечу для вентиляции и люк для розжига печи. Анализ печной среды показал, что содержание кислорода в ней составляет 18,8%, поэтому печь была дополнительно продута азотом. После этого приступили к розжигу печи. В момент розжига произощел взрыв, который по трубопроводу распространился в абсорбционную колонну. В печи синтеза разорвалась предохранительная мембрана абсорбционная колонна была разрушена. Как показали результаты расследования неработающая печь синтеза была отключена от коллектора только вентилем. На трубопроводе водорода не ыли установлены заглушки. Через неплотности вентиля водород пр01нпк в печь синтеза и абсорбционную колонну. По этой же причине в печь проник хлор, что и привело к взрыву. [c.351]

    Наличие в катализатах, полученных из 1,2-диметилциклопентанов на Rh/ и Os/ , относительно больших количеств изогексанов, а также метилциклопентана, говорит о том, что на этих катализаторах легко осуществляется гидрогенолиз любых С—С-связей, а не только связей пятичленного кольца, как на Pt/ . Установлено [155, 229, 231], что н-гексан и н-гептан над Ru-, Rh-, Ir-и Os-катализаторами также подвергаются гидрогенолизу. Было показано также [155, 229, 231], что на этих катализаторах проходит гидрогенолиз не только циклопентанов и алканов, но и циклогексанов. Таким образом, было установлено, что и шестичленные циклоалканы в присутствии ряда металлов VIII группы в сравнительно мягких условиях при атмосферном давлении водорода также претерпевают гидрогенолиз. [c.162]

    Валентные колебанпя связи углерод — водород также дают обертоны н комбинированные частоты. Ови могут быть использованы для аналитических целей. Частоты первого и второго обертонов приведены на рнс. 11 вместе со структурами, которым они прнппсываются. Область первого от 5600 до 6300 см  [c.330]

    При разложении комплекса получаются дихлорид гидроксиалюминия и хлористый водород, также являющиеся источниками протонов  [c.215]

    В реакции изопептана с шрет-бутиловым спиртом при 27° реакция переноса водорода также была основной и сопровождалась, как и в других случаях алкилирования изопентана, реакцией диспропорционирования [27]. Нонанов получилось 36%, изобутана 111% и деканов только 30%, что указывает на значительный распад последних. Так как гексаны были получены с выходом 43%, то можно заключить, что деканы и изобутан образовались бы каждый в количестве приблизительно 68—73%, если бы первый из них (или его предшественник децил-ион) не превращался в гексан и изобутан. Гексановая фракция состояла главным образом из 2,3-диметилбутана и 2-метилпентана с преобладанием последнего, что находится в согласии с механизмом диспропорционирования изопептана. [c.335]

    Среди этих кислот серная кислота обладает следующими недостатками она вызывает нежелательные побочные реакции, обусловленные сильной окисляющей способностью ее, а также способностью к сульфированию. Однако дешевизна серной кислоты и простота обращения с ней способствовали широкому применению ее для алхгилирования ароматических углеводородов, несмотря па ее недостатки. Легкость регенерации фтористого водорода также благоприятствовала использованию его для некоторых промышленных процессов алкилирования [см. гл. LVII]. [c.429]

    В присутствии следов щелочи, играющей роль катализатора, 5 мнин вытесняет водород также из воды. [c.509]

    Часть 2. Соедичемиа, содержащие кроме углерода и водорода также. сислород, связанный одинарной связью [c.215]

    Для твердого водорода остаточная энтропия при О К обусловливается существованием двух его модификаций пара- и орто-водорода. В связи с этим твердый водород также можно рассматривать как раствор (орто- и пара-водорода), энтропия которого не падает до нуля при О К. Наличие остаточной энтропии у СО (NO, NoO) связано с различной ориентацией молекул СО в кристалле ОС —СО и СО — СО). Так как атомы С и О близки по своим размерам, то эти два вида ориентации в кристалле должны обладать практически одинаковой энергией. Отсюда статистический вес наинизшего энергетического уровня отдельной молекулы равен 2, а для моля кристалла —2Л . Поэтому остаточная энтропия СО должна быть величиной порядка Rln2 = 5,76 Дж/(моль К). Сравнение значений стандартной энтропии СО, вычисленных на основании калориметрических измерений [193,3 Дж/(моль К)] и спектроскопических данных [197,99 Дж/(моль К)], подтверждает этот вывод. Для твердых веществ, кристаллические решетки которых имеют какие-либо дефекты, 5(0) Ф 0. Значения остаточной энтропии у отдельных веществ, как правило, — небольшие величины по сравнению с S°(298). Поэтому, если пренебречь остаточной энтропией (т. е. принять условно 5(0) = 0), то это мало повлияет на точность термодинамических расчетов. Кроме того, если учесть, что при термодинамических расчетах оперируем изменением энтропии при протекании процесса, то эти ошибки в значениях энтропии могут взаимно погашаться. Почти каждый химический элемент представляет собой смесь изотопов. Смешение изотопов, как и образование твердых растворов, ведет к появлению остаточной энтропии. Остаточная энтропия связана с ядерными спинами. Если учесть, что при протекании обычных химических реакций не изменяется изотопный состав системы, а также спины ядер, то остаточными составляющими энтропии при вычислении изменения энтропии Д,5 можно пренебречь. [c.265]

    Значительное применение в качестве катализатора нашел бел-водиый хлористый водород — также в присутствии промоторов, которыми кроме тиогликолевой кислоты могут служить меркаптаны и H2S. Синтез ведут при 50—60°С, насыщая смесь фенола с ацетоном безводным хлористым водородом, вместе с которым вво дят I промотор. Этот метод имеет большие преимущества перел сернокислотным, но тоже связан со значительной коррозией апиа ратуры и образованием кислотных сточных вод. [c.551]

    Образу10и1исся атомы водорода, также весьма активные, легко взаимодействуют с молекулами хлора [c.97]

    Зависимость скорости гидрогенизации глюкозы от давлени водорода также описывается ленгмюровской кривой, изображер ной на рис. 3.5. Как видно из рисунка, с увеличением давлени водорода до 8—9 МПа скорость реакции возрастает почти прям< линейно. При дальнейшем увеличении давления водорода крива зависимости, перегибаясь, стремится к пределу. На участке от до 11 МПа скорость реакции имеет дробный порядок по водород при давлении свыше 11,5 МПа скорость реакции гидрогенизаци глюкозы не зависит от увеличения давления водорода, т. е. реа1 ция принимает нулевой порядок по водороду. Можно сказать, чт начиная с давления 11,5 МПа, активные центры катализатора, и которых могут адсорбироваться молекулы водорода, заняты по ностью, и дальнейшее повышение давления не увеличивает кол) честве адсорбированного водорода. [c.70]

    При повышении температуры с 380 до 440° С и общем давлении 30 ат расход водорода также уменьшается на 45%. В таких условиях глубина гидрирования сернистых соединений несколько увеличивается, а содержание непредельных углеводородов возрастает лишь незначительно. Наблюдаемое при этом увеличение количества сульфирующихся углеводородов в очищенном топливе свидетельствует о некотором повышении концентрации ароматических углеводородов, хотя цетановое число продукта почти не изменяется. [c.224]

    Примером более крупной емкости служит резервуар LSH-1000 (рис. 58) на 1000 л жидкого водорода, также выпускаемый фирмой Linde . [c.166]

    Реакцию переноса водорода также можно объяснить прп помощи кар-бопий-иопного механизма [118]. [c.345]


Смотреть страницы где упоминается термин Водород также: [c.176]    [c.287]    [c.238]    [c.351]    [c.13]    [c.556]    [c.161]    [c.304]    [c.262]    [c.45]    [c.34]    [c.69]   
Основы биохимии Т 1,2,3 (1985) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте