Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Планка распределения

    Жидкость, стекающая с вышерасположенной тарелки, попадает в сливной сегментный карман. Верхняя кромка сегментного кармана имеет треугольные вырезы для равномерного распределения жидкости по ширине тарелки, причем вырезы расположены против желобов. Жидкость движется на тарелке по желобам вдоль колпачков. Уровень жидкости на тарелке регулируют перемещением сливной планки, которая имеет для этого продольные пазы в месте крепления шпильками. [c.139]


    Отверстия в корпусе маточников ликвидируют путем наварки планок. При приемке маточников необходимо обратить особое внимание на размеры отверстий, не допуская увеличения их выше установленной нормы. В противном случае происходят неравномерное распределение воздуха и неполный выжиг кокса с поверхности катализатора. [c.136]

    Для плотности распределения катализатора р(0) в рамках диффузионной модели частиц имеем уравнение Фоккера — Планка  [c.62]

    В рамках построенной детальной объемной геологической модели пла ста осуществляется идентификация структуры выработанных запасов нефти соответствии с распределением фильтрационно-емкостных свойств. Дополни тельно проводится пространственное согласование вырабатываемых зон на основе экспертных методов учета характера обводнения скважин, их дебитов, накопленной добычи, выявления взаимодействия скважин и комплексного учета имеющихся данных о состоянии выработки запасов (результатов бурения новых скважин, характеристик текущего состояния выработки по ГИС, результатов ремонтно-изоляционных работ по скважинам). [c.195]

    Закон Планка дает спектральное распределение излучения черного тела [c.453]

    Излучательная способность изменяется с Tg при фиксированном Рд1,благодаря изменению распределения Планка относительно фиксированной спектральной структуры полос поглощения, а также из-за уменьшения числа молекул при повышенных температурах. [c.253]

    Данные в табл. 1, 2.9.5, приведены для температур не свыше 1400 К для СО, и 1100 К для НаО. Однако данные для поглощения в полосах получены по очень точным значениям для гармонических осцилляторов, а распределение Планка известно с высокой точностью, поэтому есть уверенность в экстраполяции данных на более высокие температуры. Погрешность табличных значений лежит в пределах 10 % для данных, основанных на табл. 1, 2.9.5, и она, вероятно, в 2 раза выше при высоких температурах. [c.253]

    В ректификационных аппаратах нефтеперерабатывающих производств используют тарелки с туннельными колпачками (рис. 2.6). Такие тарелки собирают из штампованных желобов /, уложенных по ходу жидкости на опорные уголки 2 и накрытых колпачками 3 так, что между ними образуются паровые каналы. Для равномерного распределения пара колпачки в нижней части имеют трапецеидальные прорези. Колпачки крепят на полотне тарелки шпильками 4. Для равномерного распределения жидкости из тарелке сливную планку 5 также выполняют с прорезями. [c.77]

    Гетерохромная фотометрия. Для правильной оценки относительных интенсивностей линий в общем случае необходимо учитывать как изменение спектральной чувствительности и коэффициента контрастности фотоэмульсии с длиной волны, так и изменение светосилы и дисперсии спектрального прибора на данном спектральном интервале. Задача калибровки фотоэмульсии в этом случае решается с помощью стандартного спектра, т. е. спектра с известным распределением энергии. В качестве источника такого спектра, как правило, применяют ленточную лампу накаливания с известной цветовой температурой Тц. Распределение энергии в спектре ленточной лампы накаливания достаточно хорошо описывается формулой Планка  [c.128]


    Впервые задача распределения энергии в спектре абсолютно черного тела была решена в 1900 г. в классической работе Планка. [c.235]

    Представление о световых квантах. В 1900 г. Планком (Германия) для объяснения особенностей распределения энергии в спектрах нагретых тел была развита теория, основанная на предположении, что энергия не излучается атомами непрерывно, а испускается отдельными мельчайшими неделимыми порциями — квантами, величина которых зависит от частоты излучаемого света, а именно  [c.15]

    Поскольку уравнение (1-2) обосновано термодинамически и поэтому верно по существу, то уравнение закона распределения Планка должно обязательно содержать температуру в сочетании ХТ, но, имея в виду, что Я = ф, приемлемыми являются также сочетания Т/у или у/Т. Следовательно, из уравнения (1-5) видно, что квант энергии должен быть пропорционален 1/Х или, что то же самое, V, т. е. = /IV, где к — новая постоянная, называемая постоянной Планка, значение которой в настоящее время оценивается величиной 6,62-10 эрг-сек. После подстановки значения бо закон распределения Планка принял вид [c.21]

    Большое влияние на последуюш,ее развитие учения о строении вещества оказало открытие квантовой природы лучистой энергии и разработка квантовой теории. В результате исследования закона распределения энергии в спектре температурного излучения (абсолютно черного тела) Планком было установлено, что испускание и поглощение атомом лучистой энергии происходит порциями е, которые были названы квантами. Из этих работ следовало, что в атоме имеются определенные уровни энергии и излучение или поглощение энергии атомом сопряжено со скачкообразным переходом электронов в различные энергетические состояния, отвечающие определенным уровням энергии. [c.16]

    У ниве реальная постоянная Планка и квантовая механика. В 1900 г. немецкий физик Планк, изучая распределение энергии в спектре лучеиспускания абсолютно черного тела, пришел к заключению, что всякое излучение и поглош,ение световой энергии происходит малыми порциями, имеющими определенное значение для каждого вида излучения. Эта порция энергии получила название квант света, квант энергии, или фотон. Планк установил, что энергия кванта ( ) прямо пропорциональна частоте излучения (V), т. е. [c.10]

    Для объяснения законов распределения энергии в спектрах нагретых твердых тел Планком в 1900 г. была развита квантовая теория. Планк допускал, что энергия излучается атомами не непрерывно, а порциями — квантами (фотонами). Энергия кванта пропорциональна частоте излучаемого света  [c.59]

    Сливная кромка кармана имеет треугольные вырезы. Каждый из них расположен против одного из желобов. Это способствует равномерному распределению флегмы на тарелке. Слив с тарелки регулируется сливной планкой, которая устанавливается на определенной высоте и может передвигаться в вертикальном направлении. [c.185]

    Комплекс экспериментальных теплоаэродинамических исследований включает измерения локальной теплоотдачи по периметру цилиндров (метод электрокалориметрирования) поверхностного трения по периметру цилиндров (метод выступающей планки) распределения статических давлений по периметру цилиндров аэродинамического сопротивления. [c.50]

    Книга состоит из четырех глав. В первой главе, посвященной качественному анализу структуры процесса массовой кристаллизации как сложной ФХС, вскрываются особенности данной ФХС как на языке смысловых, лингвистических построений, так и на языке точных математических формулировок, причем в последнем случае обсуждаются два подхода — феноменологический (детерминированный) и стохастический. На уровне детерминированного подхода формулируется обобщенная система уравнений термогидромеханики полидисперсной смеси с произвольной функцией распределения кристаллов по размерам с учетом роста, растворения, зародышеобразования, агрегации и дробления кристаллов. Особое внимание уделено описанию процесса вторичного зародышеобразования. На основе термодинамического подхода получены теоретические зависимости для структуры движущих сил вторичного зародышеобразования при бесконтактном и контактном зародышеобразовании. Стохастический подход представлен методом пространственного осреднения, развитого в последние годы в механике гетерогенных сред, а также методами фазового пространства и стохастических ансамблей для описания стохастических свойств процессов массовой кристаллизации. На основе метода пространственного осреднения получено уравнение типа Колмогорова— Фоккера — Планка с коэффициентом диффузии, учитываю- [c.5]

    Нами исследовались изменения структуры пор и удельной поверхности цеолитсодержащих катализаторов крекинга при закоксовании, а также характеристики кокса, вьщеленного с поверхности катализатора [28, 29]. Как установлено, преобладающая часть кокса на катализаторах крекинга представляет собой сферообразные частицы. Их размер достигает 30 нм и мало зависит от содержания образующегося кокса при его изменении в пределах 0,4 до 7,0% (масс.). Возможность образования крупных глобул получает логическое объяснение, если допустить, что углеводороды и продукты их уплотнения могут мигрировать по поверхности катализатора. Такое допущение основывается на том, что для миграции требуется существенно меньшая энергия, чем для перехода из адсорбированного состояния в газообразное (примерно на величину, равную теплоте испарения). Поскольку промежуточные продукты реакций уплотнения способны частично десорбироваться в газовую фазу, естественно, они способны и к диффузии по поверхности. Определенным подтверждением этого является ранее отмеченный факт пла-сти>шого состояния кокса, выделенного из катализатора крекинга, при температурах 450-500 °С. Предположение о диффузии было подтверждено также исследованиями по изучению влияния термообработки в токе гелия на распределение кокса по грануле аморфного алюмосиликатного катализатора крекинга. Как установлено, после прогрева наблюдается выравнивание распределения кокса. [c.10]


    Попытки Планка найти объяснение распределению энергии по частотам в спектре излучения черного тела завершились построением в 1900 г. квантовой теории. Он вывел следующее теоретическое уравнение для зависимости спектральной плотпости потока излучения абсолютно черного тела от длины волиы и температуры, Вт/м-  [c.192]

    Так как энергия вращательного движения молекул всех газов, кроме водорода и дейтерия, достигает предельного значения уже при невысокой температуре, то Свращ рассчитывают, исходя из принципа равного распределения энергии по степеням свободы. Тогда для двухатомных и многоатомных газов с линейными молекулами Свращ = 2/2 Я, а для трех и более атомных газов Саращ = 3/2 Я. Колебательное слагаемое теплоемкости газа на одну степень свободы по уравнению квантовой теории теплоемкостей Планка — Эйнштейна равно [c.54]

    Блок для измерения распределения тока является основным элементом установки для определения рассениающей сиособности электролитов (рис. X), Его изготовляют следующим образом. Из органического стекла толщиной 3 мм вырезают пластину-основу /. В нен сверлят 12 отверстий диаметром 3 мм десять—в средней части пластины и два — в верхней. С помощью винтов и гаек 4 крепят предварительно покрытую оловом медную планку 5 толщиной примерно 2 мм. К винтам 2 и планке 5 припаивают внатяжку десять проволочных сопротивлепи 6 параллельно друг другу. Припаивают т кжс и винты 2 к контактам J. Для изготовления сопротивлений o необходимо использовать константановую проволоку с нулевым температурным коэффициентом сопротивления. К планке 5 припаивают два токоподвода 9 h i многожильного изолнроаа1гного провода. Токопроводы 7 припаивают к переключателю й. [c.283]

    ФОТОН — элементарная частица с массой покоя, равной нулю, вследствие чего Ф. всегда движется со скоростью света. Спнн Ф. равен 1. Ф. представляет собой порцию электромагнитного излучения, например, видимого света, рентгеновского или -излучения. Ф. называют также квантами — световыми квантами, рентгеновскими квантами или у-квантами. Ф. могут испускаться или поглощаться любой системой, содержащей электрические заряды или по которой проходит ток. Ф. с высокой энергией (7-кванты) испускаются при распадах атомных ядер и элементарных частиц, и могут вызывать расщепление атомных ядер и образование элементарных частиц. Понятие Ф. введено в 1899 г. М. Планком для объяснения распределения энергии в спектре излучения абсолютно черного тела. Существование Ф. означает, что электромагнитные волны с частотой V излучаются и поглощаются только определенными порциями (квантами) с энергией, равной hv (где /г — постоянная Планка). [c.268]

    Источники излучения. Все используемые в оптической спектроскопии источники излучения являются излучателями непрерывного спектра. Для инфракрасной спектроскопии, а также для спектроскопии в видимой области, используют раскаленные излучатели для ультрафиолетовой спектроскопии — специальные газоразрядные лампы. Распределение интенсивности излучения по спектру для идеального термического излучателя описывается законом Планка для излучения энергии абсолютно черным телом. В широком диапазоне частот интенсивность излучения различна. Особенно мала она в самом конце длинноволновой области после прохождения максимума, ближе к концу коротковолновой области, интенсивность излучения быстро падает. Радиационные свойства излучателя и положение максимума интенсивности определяются температурой, химическим составом и состоянием поверхности этого излучателя. Испольчуемые в ультрафиолетовой области водородная и аейтериевая лампы характеризуются почти равномерным спектральным распределением энергии в интервале частот 33 ООО—50 ООО см ( 300—200 нм) [401. Сведения о наиболее часто используемых излучателях непрерывного спектра приведены в табл. 5.18. [c.235]

    ХУ1-3-11. Полость объемом V при температуре Т содержит фо-нионы (ложные фотоны), находящиеся в равновесии со стенками. Ложные фотоны сходны с фотонами тем, что они — бозоны, каждый с энергией 1г их общая энергия сохраняется только при условии добавочного сжатия сумма квадратов их частот остается постоянной. Получите уравнение, аналогичное закону распределения Планка, для числа ложных фотонов с частотой между V и V [c.170]

    Экспоненциальный член, который отсутствует в формуле Рэлея— Джинса, претсказываст затухание потока энергии, когда л мало. Это выраженпе очень хорошо согласуется с экспериментальной кривой при всех длинах волн (рис. 13.2), а Л. может быть определена путем ес варьирования до лучшего согласования с экспериментом. Отметим, что, еслн бы постоянная к, хотя она и мала, по ошибке упала до нуля, то распределение Планка свелось бы к закону Рэлея—Джннса [разложение ехр(—кс1ХкТ) 1—Нс1 .кТ. что справедливо при /к /лйГ<С 1]. Таким образом, классический результат получается в пределе к—Ю. [c.426]

    Ог.метим с.хотство этого выражения с распределением Планка [уравнение (13.2.2)]. Для того чтобы определить теплоемкость, Необхо 1ИМ0 продифференцировать это выражение по Т. В результате ПОЛУЧИМ [c.427]

    Распределение Планка [уравнение (13.2.2.)] даст энергню в диапазоне длин волн dk при длине волны л. Оценнтс энергию, заключенную п интервале межу 650 и 655 н.м (рассматривая диапазон Л), как бесконечно малый), испускаемую iiarpeibi.M телом, если его те.мпература равна а) 25 С и б) 3000 С. [c.468]


Смотреть страницы где упоминается термин Планка распределения: [c.87]    [c.77]    [c.83]    [c.78]    [c.21]    [c.178]    [c.28]    [c.284]    [c.3]    [c.223]    [c.21]    [c.44]    [c.171]    [c.171]    [c.115]    [c.330]    [c.426]    [c.198]   
Фазовые равновесия в химической технологии (1989) -- [ c.119 ]

Курс физической химии Том 1 Издание 2 (1969) -- [ c.203 , c.206 ]

Курс физической химии Том 1 Издание 2 (копия) (1970) -- [ c.203 , c.206 ]

Курс физической химии Издание 3 (1975) -- [ c.459 ]




ПОИСК





Смотрите так же термины и статьи:

Планка

Плачек

Тай-Плай



© 2024 chem21.info Реклама на сайте