Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологическая схема нефти

    Принципиальная технологическая схема такой установки приведена на рис. П1-2. Как видно из схемы, переработка нефти здесь осуществляется в три ступени атмосферная перегонка нефти с получением топливных фракций и мазута, вакуумная перегонка мазута с получением узких масляных фракций и гудрона и вакуумная перегонка смеси мазута и гудрона с получением широкой масляной фракции и утяжеленного остатка, используемого для производства битума. Применение двух ступеней вакуумной перегон- [c.147]


    Важнейшей характеристикой нефтяных смесей является фракционный состав, определяемый температурными пределами выкипания всей смеси и составляющих ее узких фракций при соответствующих отборах. Фракционный состав играет решающую роль при составлении и разработке технологических схем процесса первичной перегонки нефти и наряду с углеводородным и элементным составом нефти существенно влияет также на выбор схем последующих технологических процессов нефтепереработки. На основе фракционного состава нефти определяется потенциальное содержание в нефти целевых фракций, а на основе фракционного состава нефтяных фракций рассчитываются важнейшие эксплуатационные характеристики нефтепродуктов. [c.18]

    На ранее построенных установках АТ и АВТ не было очистки компонентов светлых нефтепродуктов выщелачиванием, стабилизации бензиновых фракций, абсорбции газов и др. Для этих процессов сооружались самостоятельные установки на отдельной площадке. В результате усовершенствования технологии первичной переработки нефти и соответствующей аппаратуры, а также внедрения автоматизации начали сооружать на АТ или АВТ дополнительные блоки — электрообессоливания,-стабилизации бензиновых фракций, выщелачивания компонентов светлых нефтепродуктов, абсорбции и десорбции жирных газов. Таким образом, индивидуальные технологические установки соединились в комбинированные установки первичной переработки, называемые (независимо от числа технологических узлов и процессов) комбинированными атмосферно-вакуумными установками (ABT)j Объединенные в единую технологическую схему установки электрообессоливания, электрообезвоживания и атмосферно-вакуумной перегонки носят название ЭЛОУ —АВТ. Достоинство таких установок — более рациональное использование энергетических ресурсов АВТ. [c.24]

    Технологическая схема двухколонной установки стабилизации нефти приведена на рис. 1-1. Сырая нефть из резервуаров промысловых ЭЛОУ забирается сырьевым насосом 5, прокачивается через теплообменник б, паровой подогреватель 7 и при температуре около 60 °С подается под верхнюю тарелку первой стабилизационной колонны 2. Эта колонна оборудована тарелками желобчатого типа (число тарелок может быть от 16 до 26), верхняя из которых является отбойной, три нижних — смесительными. Избыточное давление в колонне от 0,2 до 0,4 МПа, что создает лучшие условия для конденсации паров бензина водой в водяном холодильнике-конденсаторе 8. Нефть, переливаясь с тарелки на тарелку, встречает более нагретые поднимающиеся пары и освобождается от легких фракций. Температура низа колонны поддерживается в пределах 130—150 °С за счет тепла стабильной нефти, циркулирующей через змеевики трубчатой печи 1 с помощью насоса 3. Стабильная нефть, уходящая с низа колонны, насосом 4 прокачивается через теплообменники 6, где отдает свое тепло сырой нефти. Далее нефть проходит аппарат воздушного охлаждения 19 и поступает в резервуары стабильной нефти, откуда она и транспортируется на нефтеперерабатывающие заводы. [c.7]


    При топливно-масляном варианте переработки нефти и наличии па заводе установок каталитического крекинга и АВТ большой единичной мощности целесообразно использование комбинированной технологической схемы установки первичной перегонки нефти, обеспечивающей одновременное или раздельное получение из нефти наряду с топливными фракциями широкой и узких масляных фракций [1]. [c.147]

    КРАТКОЕ ОПИСАНИЕ ТЕХНОЛОГИЧЕСКИХ СХЕМ НЕФТЕ-И ГАЗОПЕРЕРАБАТЫВАЮЩИХ ЗАВОДОВ [c.5]

    При топливном направлении нефть и газовый конденсат в основном перерабатывается на моторные и котельные топлива. Переработка нефти на НПЗ топливного профиля можег быть глубокой и неглубокой. Технологическая схема НПЗ с неглубокой переработкой отличае 1ся небольшим числом техноло) ических про — цессов и небольшим ассортиментом нефтепродуктов. Выход мотор ных топлив по этой схеме не превышает 55 —60 % масс, и зависит в основном от фракционного состава перерабатываемого нефтяного сырья. Выход котельного топлива составляет 30 — 35 % масс. [c.91]

    Выбор схемы переработки нефти определяется как структурой намечаемого потребления нефтепродуктов, так и свойствами заданной нефти. При этом рекомендуется использовать технологическую классификацию нефтей. [c.90]

    Отметим еще некоторые варианты схем двукратного испарения нефти. С целью комбинирования процессов первичной перегонки нефт и гидроочистки топливных фракций перегонку нефти предлагается осуществлять при давлении 2—7 МПа с предварительным подогревом нефти до 360—380 °С в присутствии водорода[ (20—500 м на 1 т сырья) с последующим обессериванием и ректификацией топливных фракций [10]. На рис. П1-7 показаны варианты технологических схем первичной перегонки нефти с гидро-обессериванием бензиновых фракций или всей суммы светлых фракций (бензина, керосина и дизельного топлива). [c.159]

    Анализ работы промышленных колонн показывает, что в атмосферной колонне для перегонки нефти должно быть одно илп два ПЦО, так как третье незначительно увеличивает коэффициент использования тепла и в то же время заметно снижает флегмовые числа в лежащих выше секциях колонны и усложняет технологическую схему установки. Количество тепла, отводимого каждым ПЦО, определяется требованиями к качеству получаемых дистиллятов и регулируется по температуре паров под тарелкой отбора [c.166]

    РИС. I-I. Технологическая схема установки стабилизации нефтей  [c.8]

    В основу технологической классификации нефтей, принятой в СССР, положено содержание серы в нефтях и светлых неф-тепродукта.х, выход фракций, выкипающих до 350°С, содержание и индекс вязкости базовых масел и содержание парафина. При пользовании этой классификацией следует учитывать также необходимость применения в тех или иных случаях отдельных приемов переработки (например, депарафинизации). Классификация предназначена для облегчения выбора схем производства моторных топлив и масел. Использование ее в битумном производстве затруднительно, так как она не дает для этого производства конкретных рекомендации. [c.91]

    Комплексная обработка нефти на установке, приведенной на рис. 59, осуществляется по следующей технологической схеме. Нефть поступает на прием насосов 1, которыми прокачивается через теплообменники 2, отстойники первой ступени 3 и отстойники второй ступени 5. [c.133]

    Альбом технологических схем процессов переработки нефти и газа / Под ред. Б.И. Бондаренко. — М. Химия, 1983.— 128 с. [c.278]

    Альбом технологических схем процессов переработки нефти и газа. — Под ред. Б. И. Бондаренко. [c.2]

    Поскольку температура термической стабильности тяжелых фракций соответствует примерно температурной границе деления нефти между дизельным топливом и мазутом по кривой ИТК, первичную перегонку нефти до мазута проводят обычно при атмосферном давлении, а перегонку мазута — в вакууме. Выбор температурной границы деления нефти при атмосферном давлении между дизельным топливом и мазутом определяется не только термической стабильностью тяжелых фракций нефти, но и технико-экономическими показателями процесса разделения в целом. В некоторых случаях температурная граница деления нефти определяется требованиями к качеству остатка. Так, при перегонке нефти с получением котельного топлива температурная граница деления проходит около 300°С, т. е. примерно половина фракции дизельного топлива отбирается с мазутом для получения котельного топлива низкой вязкости. Таким образом, вопрос обоснования и выбора температурной границы деления нефти подробно рассматривают при анализе различных вариантов технологических схем перегонки нефти и мазута. [c.151]

    СИНТЕЗ И АНАЛИЗ ТЕХНОЛОГИЧЕСКИХ СХЕМ ПЕРВИЧНОЙ ПЕРЕГОНКИ НЕФТИ [c.147]

    Технологические схемы установок первичной перегонки нефти обычно принимаются для определенного варианта переработки нефти — топливного или топливно-масляного (рис. П1-1). [c.147]

    Технологическая схема установки представлена на рис. И-З. Исходная нефть насосом 1 несколькими параллельными потоками (на схеме показаны четыре потока) проходит через группу теплообменников 7, 8, 9, 10, 11, 12 и 13, где она нагревается до температуры 100—130 С. Использование такой системы нагрева нефти позволяет создать более эффективный теплообмен. После теплообменников для усреднения температуры потоки нефти смешиваются в общем коллекторе (на схеме не показан). Далее нефть снова четырьмя параллельными потоками направляется в две ступени электродегидраторов 14 (блок ЭЛОУ). По выходе из блока ЭЛОУ нефть нагревается вначале в параллельно включенных теплообменниках 15 и 16, а затем в теплообменнике 18. [c.14]


    На атмосферно-вакуумной установке с секцией вторичной перегонки бензина перегоняют нефть и мазут на фракции и получают узкие бензиновые фракции, используемые далее в качестве сырья для производства ароматических углеводородов. Сырьем установки служит обессоленная и обезвоженная нефть. Установки данного типа проектируются на разные мощности 1, 2, 3 и б млн. т перерабатываемой нефти в год. Установка включает следующие секции блок частичного отбензинивания нефти, так называемая предварительная эвапорация блок атмосферной перегонки нефти блок стабилизации бензина блок вторичной перегонки бензина на узкие фракции вакуумная перегонка мазута с целью получения широкой масляной фракции — вакуумного дистиллята. Технологическая схема установки представлена на рис. II-6. [c.19]

    АЛЬБОМ ТЕХНОЛОГИЧЕСКИХ СХЕМ ПРОЦЕССОВ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА [c.128]

    Без знания термодинамических свойств фильтрационного потока нефти и газа в пластовых условиях невозможно составить правильную технологическую схему проведения теплового воздействия на залежь. Таким образом возникла необходимость в специальной книге, в которой были бы приведены термодинамические свойства фильтрационного потока нефти и газа при различных пластовых давлениях и температурах. [c.5]

    Технологическая схема усовершенствованной установки АВТ (А-12/2) с учетом дополнений и изменений, внесенных в период строительства, наладки и эксплуатации, приведена на рис. 40. Обессоленная нефть забирается сырьевыми насосами / и тремя потоками прокачивается через теплообменники 2 в первую ректификационную колонну 4. Для первого потока используется тепло циркуляционного орошения основной ректификационной колонны 7, тепло второго погона вакуумной колонны 10 и гудрона. Для второго потока утилизируют тепло первого погона вакуумной колонны 10, третьего ее погона и гудрона. Третий поток (дополнительный к проекту, на схеме не показан) нагревается за счет тепла циркуляционного орошения основной ректификационной колонны 7 и гудрона. Кроме того, третий поток нагревается в конвекционной.  [c.91]

    Установка рассчитана на переработку нестабильной нефти Ромашкинского месторождения и отбор фракций и. к.—62, 62—140, 140—180, 180—220 (240), 220 (240)—280, 280—350, 350—500°С (остаток — гудрон). Исходное сырье, поступающее на установку, содержит до 5000 мг/л солей и до 2 вес. % воды. Содержание низкокипящих углеводородных газов в нефти достигает 2,5 вес. % на нефть. На установке принята двухступенчатая схема электрообессоливания, позволяющая снизить содержание солей до 30 мг/л и воды до 0,2 вес. %. Технологическая схема установки предусматривает двухкратное испарение нефти. Головные фракции из первой ректификационной колонны и основной ректификационной колонны вследствие близкого фракционного состава получаемых из них продуктов объединяются и совместно направляются на стабилизацию. Бензиновая фракция н. к.— 180 °С после стабилизации направляется на вторичную перегонку с целью выделения фракций н. к. — 62, 62—140 и 140—180 °С. Блок защелачивания предназначается для щелочной очистки фракций н. к.—62 (компонент автобензина) и 140—220 °С (компонент топлива ТС-1). Фракция 140— 220 °С промывается водой, а затем осушается в электроразделителях. [c.114]

    Настоящий альбом принципиальных технологических схем является пособием для студентов вузов, обучающихся по специальности Технология пере работки нефти и газа , а также по смежным специаль ностям. Альбом, не подменяя соответствующих учебников и монографий, позволяет исполнителям курсо. вых проектов глубже уяснить основы технологических процессов, лучше обосновать выбранные схемы и их аппаратурное оформление и более продуманно и успешно составить пояснительную записку. Все это будет способствовать повышению профессиональной подготовки будущих молодых специалистов. [c.5]

    При выборе технологической схемы и режима атмосферной nef егонки нефти руководствуются главным образом ее фракцион — ным составом и, прежде всего, содержанием в ней газов и бензи — ноьых фракций. [c.183]

    РИС. 11-1. Технологическая схема установки атмосферной перегонки нефти  [c.12]

    Установка включает следующие основные секции подготовки сырья до требуемой температуры (при переработке гудрона, поступающего непосредственно с вакуумной установки, необходимо его охлаждение до требуемой температуры с использованием тепла на нагрев нефти в теплообменниках) окисления в колоннах (реакторы колонного типа непрерывного действия) конденсации паров нефтепродуктов, воды, низкомолекулярных альдегидов, кетонов, спиртов и кислот, а также их охлаждение сжигания газообразных продуктов окисления. Технологическая схема установки представлена на рис. ХИ-1. [c.106]

    Результаты расчетов себестоимости 1 т парафинов, получаемых из различных нефтей по разным технологическим схемам, приведены в табл. 41. [c.146]

    Принципиальная технологическая схема двухколонной уста — ювки стабилизации нефти приведена на рис.5.1 (без насосов и юдробной схемы теплообмена потоков). [c.144]

    Для современных промышленных установок, перерабатывающих типовые восточные нефти, рекомендуются следующие фракции, из которых составляются материальные балансы переработ-. ки бензин 62—140°С (180°С), керосин 140 (180)-240°С, дизельные топлива 240—350 °С, вакуумные дистилляты 350—490 °С (500 °С), тяжелый остаток — гудрон >490(500 °С). Нефти сильно различаются по фракционному составу. Некоторые нефти богаты содержанием компонентов светлых, и количество в них фракций, выкипающих до 350 °С, достигает 60—70 вес. %. Фракционный состав нефтей играет важную роль при составлении и разработке технологической схемы процесса, расчете ректификационной системы и отдельных аппаратов установки. Температуры выкипания отдельных фракций зависят от физико-химических свойств, нефти. Последние учитываются при разработке и выборе схем первичной переработки, аппаратурном и материальном оформлении установки. Так, при переработке нефтей, содержащих серу, требуются дополнительные процессы гидроочистки для обессеривания нефтепродуктов, а для парафинистых нефтей — депарафинизацион-ные установки по обеспарафиниванию фракций, особенно кероси-но-газойлевых. Для проектирования новых установок необходимо разработать соответствующий регламент и получить нужные рекомендации. [c.23]

    Мазут — остаток атмосферной перегонки нефти — перегоняется на самостоятельных установках вакуумной перегонки или на вакуумных секциях атмосферно-вакуумных трубчаток (АВТ). На современных вакуумных установках применяют следующие технологические схемы перегонки мазута однократного испарения всех отгоняемых фракций в одной вакуумной колонне однократного испарения с применением отпарных колонн двухкратного испарения отгоняемых фракций в двух вакуумных колоннах. Получаемые при вакуумной перегонке мазута дистилляты могут быть использованы в качестве сырья каталитического крекинга (работа по топливной схеме) и в качестве фракций для производства масел (работа по масляной схеме). При работе по топливной схеме на установке получается одна широкая фракция, направляемая в качестве сырья (широкого вакуумного отгона) на установки каталитического крекинга. Если вакуумная перегонка ведется с целью получения масляных дистиллятов, то к качеству получаемых фракций и в частности к их фракционному составу предъявляются более жесткие требования. На установках, запроектированных и построенных в последние годы, предусматривается получение двух масляных фракций 350—420 °С и 420—490 °С (для типового сырья из ромашкинской и туймазинской нефтей). Далее путем компаундирования можно получить на их основе различные масляные фракции. [c.32]

    Технологическая схема реконструированной установки следующая. Нефть двумя потоками прокачивается через теплообменники и дегидраторы. Благодаря использованию дополнительного тепла циркуляционных орошений она нагревается до 202 °С. До реконструкции температура нагрева в теплообменниках не превышала 170 °С. Нагретая нефть поступает в испаритель. Парогазовая смесь из испарителя направляется в основную ректификационную колонну. Полуотбензинеиная нефть с низа испарителя подается в трубчатую печь, где нагревается до 330—340 °С, и затем также поступает в основную колонну. В колонне 27-ая, 19-ая и 12-ая тарелкн не имеют слива жидкости вниз. Колонна оборудована штуцерами для отвода и подвода трех циркуляционных орошений. Первое циркуляционное орошение забирается насосом с 10-ой тарелки и после теплообменников возвращается на 11-ую второе забирается с 17-ой тарелки и подается на 18-ую третье выводится с 25-ой тарелки и возвращается на 26-ую. В колонне в качестве боковых погонов отбирают три фракции 140—260 260—300 и. 300—350 °С. [c.72]

    Модернизирование технологической схемы ЭЛОУ применительно к работе на неионогенных деэмульгаторах (ОП-7, ОП-10, Кау-фе-14) позволило увеличить производительность установок на 50% против проектной и снизить потери нефти. Замена вертикальных электродегидраторов горизонтальными способствовала повышению производительности (по нефти) в 6 раз. Два таких электродегидратора служили I ступенью обессоливания. На II ступени использовали 12 электродегидраторов типа НЗП. При работе I ступени двухступенчатой ЭЛОУ, оборудованной горизонтальными электродегидраторами, производительность в два с половиной раза превысила проектную. Расход электроэнергии снизился на 25—30%. Для [c.127]

    Последующие работы, выполненные в этой области в 1956— 1958 гг. в ГрозНИИ А. Г. Мартыненко и М. Г. Митрофановым [21], показали, что и среди остаточных видов сырья имеются продукты, недостаточно хорошо поддающиеся центрифугированию из-за своей микроструктуры. Так, остаточный рафинат, получаемый из жирновской нефти, дает микроструктуру, приближающуюся к структуре дистиллятных продуктов, в то время как аналогичный рафинат, полученный по той же технологической схеме из карачухуро-сураханской нефтесмеси, образует характерную для остаточного сырья дендритную структуру. Такая разница в кристаллической структуре этих продуктов обусловливается различием [c.132]

    Приведены технологические схемы основных процессов переработки нефти и газа опнсаны режимы работы отдельных аппаратов и их конструктивные особенности приведены характеристики разл.ччных видов сырья и данные о качестве получаемых продуктов. [c.2]

    Потенциальйая возможность получения высококачественных битумов из нефтей разной природы (сернистых или парафинис-тых) реализуется лишь при правильном определении не только вклада того или иного процесса в общую технологическую схему производства, но и последовательности их проведения. [c.7]


Смотреть страницы где упоминается термин Технологическая схема нефти: [c.155]    [c.8]    [c.154]    [c.252]    [c.103]    [c.197]    [c.1]    [c.12]   
Системный анализ процессов химической технологии (1986) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Выбор технологической схемы переработки нефти

Краткое описание технологических схем нефте- и газоперерабатывающих заводов

Основные технологические схемы сбора н транспорта нефти и газа на промыслах

Принципиальные технологические схемы установок перегонки нефти и мазута

Разработка способов и технологических процессов переработки высокосернистых и сернистых нефтей Кантор. Перспективная схема переработки высокосернистых нефтей

Рациональная технологическая схема производства масла из нефтей типа жирновской. М. Г. Митрофанов (ГрозНИИ)

Синтез и анализ технологических схем первичной перегонки нефти

Совершенствование технологических схем атмосферной перегонки нефти

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА j Кантор. Перспективная схема переработки высокосернистых нефтей

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ПЕРЕРАБОТКИ НЕФТИ И ГАЗА Кантор. Перспективная схема переработки высоко сернистых нефтей

Терентьев. Технологические схемы НПЗ для неглубокой переработки арланской нефти

Технологическая схема выделения ацетилена из газов термоокислительного пиролиза метана и нефти аммиаком

Технологические схемы глубокой переработки нефти на зарубежных НПЗ

Технологические схемы и режим обезвоживания п обессоливания нефти в электродегидраторах

Технологические схемы обессоливания нефти на ЭЛОУ

Технологические схемы переработки нефти на топливо

Технологические схемы подготовки нефти

Технологические схемы процессов переработки газа, газового конденсата и нефти

Технологические схемы современных процессов переработки нефти

Технологические схемы стабилизации нефти

Технологические схемы установок комплексной подготовки нефти, газа и конденсата к транспорту

Технологические схемы установок первичной перегонки нефти



© 2025 chem21.info Реклама на сайте