Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ванадий оловом

    Этот метод отличается большей точностью, чем предыдущий, но. он более длителен и применим лишь для анализа металлического титана, титановой губки и сплавов, в состав которых входят металлы, способные образовывать купферонаты, экстрагируемые хлороформом, в частности железо, ванадий, олово и цирконий. [c.53]

    Для гидрогенизации масел, а также угля и каменноугольной смолы, рекомендуются различные катализаторы. Наиболее важные относятся к соединениям молибдена, вольфрама, хрома, ванадия, олова, цинка, железа, кобальта и никеля. Эти катализаторы могут применяться одни или в смеси с другими веществами, которые играют роль промоторов и носителей, таковы глина, силикагель, окись алюминия и окись магния. Когда катализаторы нанесены на окись магния, кизельгур, окись алюминия и т. д., они обладают большей активностью, чем в случае применения их в чистом виде. Применяются также сложные катализаторы, например, окиси молибдена и цинка. [c.200]


    При ректификационной очистке пентахлоридов ниобия и тантала происходит эффективное отделение многих сопутствующих примесей — таких, как титан, кремний, железо, цирконий, ванадий, олово, алюминий, вольфрам, фосфор и др. [34, 39]. [c.163]

    Окислы (тория, молибдена, ванадия, олова, хрома, вольфрама, кобальта, железа, марганца) [c.22]

    Поскольку, как выше отмечалось, пятиокись ванадия обладает малой активностью в реакции окисления сернистого газа, усилия многочисленных исследователей вот уже в течение более семидесяти лет направлены на повышение производительности ванадиевых контактов. Боресков [3701 рассматривает целый ряд предлагавшихся ванадиевых катализаторов ванадаты серебра и железа, сложные ванадий-олово-кремний-бариевые, промотированные сурьмой, ванадий-свинцово-кремниевые, кальций-ванадиевые и другие контакты. Все эти катализаторы в настоящее время в промышленности не используются. [c.263]

    Чувствительность метода. Пламенные спектрофотометры, собранные на основе монохроматоров УМ-2 и СФ-4, оказались достаточно простыми и универсальными приборами, позволяющими определять большое число металлов. Однако при измерении малых концентраций возникают затруднения, вызванные фоном пламени [39.4]. Прежде всего, источником фона является само пламя, в котором возбуждаются радикалы и молекулы О2, СН, Сд. Нестабильность фона пламени существенно ограничивает чувствительность и точность метода. Фон пламени смеси ацетилен—воздух мешает определению элементов, линии которых находятся в области 4000—6000 А в красной же и инфракрасной области фон ничтожно мал. Кроме того, посторонние элементы, присутствующие в растворе, часто дают излучение, спектр которого состоит из молекулярных полос или является сплошным. К числу этих элементов относятся щелочноземельные и редкоземельные металлы, бор, алюминий, медь, фосфор, молибден, ниобий, уран, цинк, бериллий, ванадий, олово, теллур и титан. Следует заметить, что при недостаточной дисперсии прибора и широких входных щелях, излучение соседних линий может привести к завышенным результатам. Экспериментальное сравнение приборов с неподвижным спектром и со сканированием показало, что при сканировании величина фона значительно меньше влияет на точность измерений и на чувствительность метода. [c.304]

    Осаждение купфероном (стр. 143) дает четкое отделение ряда элементов от алюминия. Этот метод особенно успешно применяется в тех случаях, когда требуется отделить малые количества железа, титана, циркония, ванадия, олова, ниобия и тантала от больших количеств алюминия, как, например, при анализе бокситов или металлического алюминия. Алюминий можно выделить из фильтрата добавлением еще некоторого количества купферона. и нейтрализацией раствора до слабокислой реакции (pH около 5). Его можно осадить также из нагретого до 70° С фильтрата оксихинолином после добавления аммиака до щелочной реакции. В дальнейшем поступают, как указано на стр. 572. [c.564]


    Процесс окислительного аммонолиза осуществляется при атмосферном давлении, температуре 350—480 и в присутствии различных катализаторов, содержащих окислы ванадия, олова и титана [51], ванадия и хрома [50] и др. [c.70]

    Для установления величины редокси-поляризации и ее зависимости от условий электролиза было исследовано большое число неорганических и органических веществ. Изучали поляризацию при перезарядке ионов железа, марганца, таллия, церия, ванадия, олова, золота, платины, титана, вольфрама, молибдена, комплексных ионов железа Ре(С1 )5 , Ре(СЫ)б", марганца Mn( N)s , Мп(СЫ)д и MnO , МпО и ряда других металлов. Изучена поляризация при реакциях окисления и восстановления хинонов и гидрохинонов, нитросоединений, кетонов и альдегидов, органических ненасыщенных соединений и др. [c.394]

    В качестве катализаторов окислительного дегидрирования олефинов 4—С 5 предложены многочисленные композиции на основе молибдатов или вольфраматов висмута [214—218], кобальта, ванадия, олова, титана [217], теллура [218], натрия и лития [219]. Окислительное дегидрирование протекает также в присутствии фосфорной кислоты, осажденной на различные носители [215, 220—224, 256] и фосфатов висмута и железа [224], кальция, никеля и хрома [225, 226], стронция, ванадия, вольфрама [225], марганца и церия [227], алюминия [228], кобальта и серебра [229], индия [230]. Пятиокись фосфора вводится также в состав катализаторов на основе молибдатов и вольфраматов висмута [211, 231—233]. Широкое распространение получили смешанные окисные катализаторы [233—238], из которых наибольшего внимания заслуживают катализаторы на основе окислов сурьмы и олова [215, 233, 239—242] и сурьмы и железа [239, 242—245]. Запатентованы катализаторы [c.161]

    В [105] определяли 1п (1-10 %) в полупроводниковых материалах, в ванадии, олове и железе на фоне-хлороводородной и винной кислот. Еп——0,7 В (р. д.). [c.147]

    Осаждение купфероном в растворе, содержаш,ем 10% серной кислоты (по объему), служит для отделения алюминия от железа (III), циркония, титана, ванадия, олова и некоторых других менее часто встречающихся элементов. Купферонат железа можно экстрагировать смесью эфира и бензола (стр. 149). Избыток купферона в фильтрате или в экстрагированном растворе можно разрушить нагреванием с серной и азотной кислотами.  [c.137]

    Помимо меди, кремния и кислорода, в медных рудах может присутствовать много других элементов, наиболее важными из которых являются цинк, свинец, мышьяк, сурьма, висмут, селен, теллур, никель, кобальт и благородные металлы примесями меньшего значения являются кальций, магний, алюминий, барий, натрий, калий, марганец, литий, фтор, титан, уран, ванадий, олово и молибден. Все эти элементы в какой-то степени удаляются в последовательных операциях обжига, плавки и конвертирования. [c.133]

    Окисный ванадий-олово-фосфор-кремниевый (V Sn Р SI = 1 8 3 159, ат.) 230° С. Конверсия 1 — 85—90%, выход 11 — 80—85% [49], Катализатор тот же кипящий слой, 1 бар, 480° С, время контакта 1 сек. Выход II — 85% (49  [c.463]

    Этот метод обычно применяют после гидролитического осаждения ниобия и тантала в кислой среде. Очевидно, при таком определении нужнО быть уверенным, что ниобий полностью отделен от таких элементов, как железо, титан, марганец и цирконий, которые в данных условиях также экстрагируются хлороформом и дают оксихиноляты. Молибден, вольфрам, ванадий, олово и тантал, как сообщают, при этих условиях хлороформом не экстрагируются. [c.622]

    Первая стадия этого процесса — синтез фталонитрилов — осуществляется при атмосферном давлении в интервале температур 350—480 С при четырехсемикратном избытке аммиака и кислорода. В качестве катализаторов используют окислы металлов переменной валентности, преимущественно на основе пятиокиси ванадия. Применение смеси окислов позволяет повысить активность и несколько улучшить селективность катализаторов. Наиболее часто предлагают использовать смеси окислов ванадия, олова и титана, ванадия и хрома, ванадия и молибдена рекомендуются также смеси окислов ванадия, титана, молибдена и висмута. Катализаторы могут применяться в виде сплавов, совместно осажден ных окислов или наноситься на окись алюминия, карборунд, силикагель, алюмосиликат и др. [c.286]

    Указанные количестаа обычно считаются необходимыми для предотвращения заболеваний, вызываемых неполноценным питанием. Для поддержания отличного здоровья оптимальную суточную норму веществ, необходимых в малых количествах, можно несколько увеличить. Несмотря на то что в данной рекомендации не указано, однако, вероятно, требуются незаменимые жирные кислоты, л-амииобензойная кислота, холин, витамин О, витамин К. хром, марганец, кобальт, никель, цинк, селен, молибден, ванадий, олово и кремний. [c.417]

    Прекрасным методом предварительного отделгиия мышьяка, встречающегося в малых количествах во многих материалах, является осаждение его аммиаком в виде основного арсената железа. Этот метод применяется при анализе медных и молибденовых руд. В этих случаях разложение исходного материала ведут так, чтобы весь мышьяк получился в пятивалентной форме, затем прибавляют 0,1—0,2 г соли железа (III) (если последнее не присутствует уже в растворе в достаточном количестве) на каждые 10 мг мышьяка и осаждают, как указано в гл. Молибден (стр. 360). Ряд других элементов селен, теллур, фосфор, вольфрам, ванадий, олово и сурьма — также осаждается этим методом. Применение соли алюминия вместо соли железа (III) не дает таких удовлетворительных результатов. [c.308]


    Жирорастворимые витамины выполняют другие важные функции. Витамин А служит предшественником светочувствительного пигмента, претерпевающего цикл химических превращений в палочках сетчатки у позвоночных. Витамин Dз, или холекальциферол, образующийся из 7-дегидрохолестерола под действием солнечного излучения,-это основной предшественник 1,25-дигидроксихоле-кальциферола, который, подобно гормону, регулирует обмен ионов Са в тонком кишечнике и костях. Витамин К является кофактором при ферментативном образовании остатков у-карбок-сиглутаминовой кислоты в протромбине - Са -св языв ающем б ел ке плазмы крови, играющем важную роль в свертывании крови. Железо, медь, цинк, марганец, кобальт, молибден, селен и никель-все эти элементы необходимы для действия многих ферментов. Кроме того, в пище животных должны содержаться и некоторые другие элементы, в том числе ванадий, олово, хром и кремний однако их функции точно еще не установлены. [c.298]

    Другие результаты но действию излучения на коллоидные системы были получены Нанобашвили и Бах [25]. По их данным облучение приводит к потере стабильности и к коагуляции независимо от знака заряда золя, чти связано со снижением заряда поверхности мицелл за счет восстановления металла стабилизирующих ионов продуктами радиолиза воды. Это показано на отрицательно заряженных золях окислов марганца, ванадия, олова и положительно заряженных золях окислов железа и церия. Золи окислов металлов постоянной валентности не способны менять заряд и поэтому остаются стабильными под действием излучения. В соответствии с этим золи 8102 и АЬОз оказались стабильными. Но золи окислов металлов, [c.63]

    Для ванадия известно несколько степеней окисления. Для титрования ванадия(II) в модельных растворах и искусственных смесях предложено использовать электрогенерированное железо(III) с биамперометрической индикацией к. т. т. После растворения пробы амальгамой цинка восстанавливают ванадий(У) и (IV) до V" и титруют его железом(1П) на фоне серной кислоты при pH > 1 [474]. Разработаны методики определения и V в смесях ионов марганца, хрома и ванадия [475], сталях, содержащих молибден и вольфрам [476, 477], и в сплавах [478, 480—482]. Для индикации к. т. т. предложены потенциометрический и биамперометрический методы. Электрогенерированные титранты из металлоактивных электродов — металлического ванадия, олова, меди и хрома —применены для определения ванадия в инструментальных сталях, сплавах, хромитовых рудах [483, 484—490, 497], латунях, бронзах [494— 497], металлическом цинке [497—499]. [c.75]

    Для устранения фонового сигнала сильновосстановитель-ного кислородно-ацетиленового пламени в [12] предложена модификация стандартной атомно-абсорбционной аппаратуры, заключающаяся в том, что излучение трубки (лампы) с полым катодом концентрировали на узком участке пламени, далее свет проходил через трубку и попадал на щель монохроматора. Таким способом автор устранил излучение пламени в области 280—320 ммк, что привело к повышению чувствительности определения ванадия, олова и алюминия (определение проводили в гексоне в присутствии купферона). [c.220]

    Если в рассмотренных работах действие атомов металлов на полисилоксаны оценивалось с чисто химических позиций, то Грубер и др. [ИЗ, 125] считают, что введение небольших количеств неорганических добавок, содержащих гетероатомы бора, фосфора, титана, алюминия, ванадия, олова и др., в состав основной полимерной цени приводит к образованию надмолекулярных структур и соответственно упорядоченности отдельных участков полимерных цепей. Такие добавки неорганических веществ рассматривались как центры ориентации. Механизм действия добавок связывается с их способностью к образованию координационных и полярных связей между цепями. Упорядочение вторичной структуры полидиметилсилоксана приводило к повышению его термостойкости. Для термостабилизации полисилоксанов гетероатомы металлов вводили в виде различных соединений (ацетаты и каприлаты железа, нафтенаты свинца, цинка, кобальта, железа, марганца, нафтенаты и каприлаты индия и церия и т. д. [103), а также в виде мелкодисперсных порошков металлов [125]. [c.40]

    Кроме пропилена в процессе используются аммиак и воздух или технический кислород. Для разбавления реакционной смеси подается водяной пар. Катализаторами могут служить окислы молибдена, висмута, кобальта, хрома, ванадия, олова, сурьмы В промышленных условиях используется фосфомолибдат висмута на носителе (гель метакремневой кислоты или корунд.) [c.321]

    Катализаторами могут служить оксиды молибдена, висмута, кобальта, ванадия, олова, сурьмы на носителе (гель метакрем-невой кислоты или корунд). [c.240]


Смотреть страницы где упоминается термин Ванадий оловом: [c.463]    [c.119]    [c.568]    [c.474]    [c.369]    [c.186]    [c.172]    [c.433]    [c.196]   
Новые окс-методы в аналитической химии (1968) -- [ c.187 ]




ПОИСК







© 2025 chem21.info Реклама на сайте