Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Незаменимые аминокислоты жирные кислоты

    Основными химическими компонентами пищи являются следующие шесть групп веществ поставщики энергии (углеводы, жиры, белки), незаменимые аминокислоты, незаменимые жирные кислоты, витамины, минеральные вещества и вода (см. табл. 39). Каждое вещество выполняет конкретную функцию в жизнедеятельности организма и влияет на выполнение физической работы. [c.446]


    Ферментные препараты применяются в процессе получения заменителей цельного молока для молодняка крупного рогатого скота из кормовых дрожжей, которые подвергаются гидролизу. В результате гидролиза разрушается клеточная оболочка дрожжевых клеток и микробная биомасса переводится в легкоусвояемую форму, повышается содержание растворимых углеводов, незаменимых аминокислот и полиненасыщенных жирных кислот. Для гидролиза кормовых дрожжей обычно используют препараты — пектофоетидин ГЗх, дрожжелитин ГЗх, лизосубтилин ГЮх. [c.294]

    Стоит отметить, что все природные жирные кислоты содержат четное число углеродных атомов, что связано с характером их биосинтеза в живых организмах. Ненасыщенные жирные кислоты с двумя пли больше двойными связями не могут образовываться в животном организме и поэтому должны доставляться с пищей, подобно незаменимым аминокислотам и витаминам. Вследствие наличия двойных связей ненасыщенные жирные кислоты легко окисляются. [c.107]

    Для жизнедеятельности организма человека н животных необходимы белки, жиры и углеводы, являющиеся пластическими и энергетическими материалами, а также минеральные соли н витамины. Среди жиров и продуктов гидролиза белков имеются незаменимые органические вещества, поступление которых должно обеспечиваться с пищей, так как они не синтезируются организмом. По-видимому, по мере эволюционного развития животного мира отдельные виды постепенно теряли способность к биосинтезу некоторых простых органических соединений, участвующих в метаболических процессах, так как более эффективным для организма путем они могли получить их из окружающей органической природы — растений и микроорганизмов или с животной пищей. К таким органическим соединениям относятся незаменимые -аминокислоты, незаменимые ненасыщенные жирные кислоты, а также витамины (термин витамины предложен Функом [2]). На необходимость для питания таких факторов ( витаминов ), не синтезируемых животными, указывал Лунин [3]. Для человека незаменимыми оказались восемь -аминокислот (из 20) валин, лейцин, изолейцин, лизин, треонин, метионин, фенилаланин триптофан [4]. Для животных незаменимых аминокислот значительно больше, например для крысы —11. [c.5]

    В определении понятия витамины до сих пор существуют разногласия, поскольку имеется ряд примеров, когда витамины оказываются незаменимыми факторами питания для человека, но не для некоторых животных. В частности, известно, что цинга развивается у человека и морских свинок, но не у крыс, кроликов и ряда других животных при отсутствии в пище витамина С, т.е. в последнем случае витамин С не является пищевым или незаменимым фактором. С другой стороны, некоторые аминокислоты (см. главу 2), как и ряд растительных ненасыщенных жирных кислот (линолевая, линоленовая и др.), оказались незаменимыми для человека, поскольку они не синтезируются в его организме. Однако в последнем случае перечисленные вещества не относятся к витаминам, так как витамины отличаются от всех других органических пищевых веществ двумя характерными признаками I) не включаются в структуру тканей 2) не используются организмом в качестве источника энергии. [c.205]


    Синтез незаменимых аминокислот из продуктов обмена углеводов и жиров в организме животных отсутствует. Клетки животных не содержат ферментных систем, катализирующих синтез углеродных скелетов этих аминокислот. В то же время организм может нормально развиваться исключительно при белковом питании, что также свидетельствует о возможности синтеза углеводов из белков. Процесс синтеза углеводов из аминокислот получил название глюконеогенеза. Он доказан прямым путем в опытах на животных с экспериментальным диабетом более 50% введенного белка превращается в глюкозу. Как известно, при диабете организм теряет способность утилизировать глюкозу, и энергетические потребности покрываются за счет окисления аминокислот и жирных кислот. Доказано также, что исходными субстратами для глюконеогенеза являются те аминокислоты, распад которых сопровождается образованием прямо или опосредованно пировиноградной кислоты (например, аланин, серин, треонин и цистеин). Более того, имеются доказательства существования в организме своеобразного циклического процесса—глюкозо-аланинового цикла, участвующего в тонкой регуляции концентрации глюкозы в крови в тех условиях, когда в период между приемами пищи организм испытывает дефицит глюкозы. Источниками пирувата при этом являются указанные аминокислоты, образующиеся в мышцах при распаде белков и поступающие в печень, в которой они подвергаются дезаминированию. Образовавшийся аммиак в печени обезвреживается, участвуя в синтезе мочевины, которая выделяется из организма. Дефицит мышечных белков затем восполняется за счет поступления аминокислот пищи. [c.548]

    Незаменимые пищевые вещества не синтезируются из других веществ и поэтому должны содержаться в пище в готовом виде. К незаменимым относятся все минеральные компоненты, а также витамины, некоторые аминокислоты (гл. 11) и некоторые жирные кислоты (гл. 10). [c.181]

    Наряду с незаменимыми аминокислотами незаменимые ненасыщенные высшие жирные кислоты (витамин F) и аминоспирт холин участвуют в построении различных тканей. [c.620]

    На схемах 9.6 и 9.7 представлено большинство веществ, которые были идентифицированы в нервной системе как медиаторы, и показаны их главные метаболические пути и этапы синтеза. На рис. 9.6 начало пути наверху показано, что метаболизм начинается с веществ, поступающих с кровотоком. Для нервных клеток это является критическим фактором из-за так называемого гематоэнцефалического барьера. Этот барьер в мозге позвоночных образуют плотные контакты между эндотелиальными клетками капилляров, которые изолируют мозг (за исключением определенных областей) от веществ, циркулирующих в кровотоке. К веществам, которые могут преодолевать этот барьер, относятся ионы, глюкоза, незаменимые аминокислоты и жирные кислоты. Центральная роль глюкозы в энергетическом обмене и в синтезе аминокислот и белков отражена на схеме (рис. 9.6). Мы еще вернемся к этому далее. [c.214]

    Четвертый уровень связан с количественными оценками моноструктур -ингредиентов биологической ценности продукта (незаменимых аминокислот, полиненасыщенных жирных кислот и др), т.е. составляющих компонентов элементов химического состава. Критерий в данном случае выражается суммой квадратов отклонений содержания моноструктурных элементов от их значений в некотором эталонном сбалансированном продукте (например, яи шни белок или грудное молоко)  [c.57]

    Наряду с В, необходимость к-рых для человека и животных бесспорно установлена, в пище содержатся биологически активные в-ва, дефицит к-рых не приводит к обнаруживаемым нарушениям в организме или к-рые по своим ф-циям ближе не к В, а к другим незаменимым пищ в-вам (незаменимым аминокислотам, полиненасыщ жирным к-там) Эти в-ва наз витаминоподобными К ним обычно относят биофлавоноиды, холин, инозиты, тпоевую кислоту, оротовую кислоту, пангамовую кислоту и п-амино-бензойную к-ту (см. Аминобензойные кислоты). [c.387]

    Содержание белков в клетках lorella и S enedesmus составляет около 55 % (в расчете на сухую массу), а в клетках Spirulina — 65 %. Белки водорослей хорошо сбалансированы по содержанию незаменимых аминокислот, за исключением метионина. В клетках водорослей, кроме того, синтезируется довольно много полинена-сыщенных жирных кислот и -каротина (до 150 мг %). [c.14]

    Пищевая ценность мяса зависит от количественного соотношения влаги, белка, жира, содержания незаменимых аминокислот, полиненасьцценных жирных кислот, витаминов, микро- и макроэлементов, а также органолептических показателей мяса. [c.98]

    Полиненасыщенные ацилы. В препаратах зеленых белков линоленат (18 3) представляет 46 % всех ацилов, а на долю линолеата (18 2) приходится 18% [33]. Первый из них является незаменимой жирной кислотой, второй — витамином Р. Этим определяется их питательная ценность. Будучи связанными с ламеллярными белками, они способствуют появлению у зелены.х белков гидрофобных свойств. Эти полиненасыщенные ацилы особенно чувствительны к окислениям, катализируемым катионами металлов либо нативными или денатурированными металло-протеинами [29]. В процессе их окисления появляются свободные радикалы и перекиси, которые, в свою очередь, содействуют окислению некоторых аминокислот или таких полиненасыщенных пигментов, как каротиноиды [23]. Окисление этих полиненасыщенных остатков жирных кислот приводит также к появлению боле1 мелких летучих молекул с характерным запахом (листвы, плесени, фасоли, прогорклости и пр.), которые делают зеленые белки при их старении малоаппетитными [89, 83]. [c.254]


    Содержание белков в клетках хлореллы и сценедесмус составляет 45—55 % в расчете на сухую массу, а в клетках спирулины достигает 60—65 %. Белки водорослей хорошо сбалансированы по содержанию незаменимых аминокислот, недостаточно содержится лишь метионина. Наряду с высоким содержанием белковых веществ в клетках водорослей довольно много синтезируется полиненасыщенных жирных кислот (являющихся, как и некоторые аминокислоты, незаменимыми) и провитамина А — каротина (до 150 мг%). Каротина в биомассе водорослей в 7—9 раз больше, чем в травяной муке из люцерны, отличающейся наиболее высоким содержанием этого провитамина среди кормовых трав. Содержание нуклеиновых кислот в одноклеточных водорослях значительно ниже (4—6 %), чем у бактерий, однако несколько выше по сравнению с растительными источниками белка (1—2%). [c.269]

    Древесная зелень богата биологически активными веществами. Кроме собственно витаминов ока содержит большое количество уже упоминавшегося провитамина А, ряд стеринов - провитаминов В. Также в зелени содержатся витаминоподобные вещества (бифлавоноиды - витамин Р, циклические спирты инозиты и др.), которые по своим функциям в животных организмах близки или к витаминам, или к другим незаменимым пищевым веществам (незаменимым жирным кислотам и аминокислотам). Древесная зелень содержит, главным образом в связанном виде, все незаменимые кислоты, а также незаменимые полиненасыщенные кислоты - линолевую и линолено-вую. [c.534]

    Для нормального питания человек должен получать с пищей более 40 различных незаменимых веществ (табл. 26-1). К ним относятся 10 аминокислот, 13 витаминов, 20 или более неорганических элементов (обычно в виде растворимых солей) и одна или несколько полиненасыщенных жирных кислот. К этим веществам следует также добавить клетчатку, состоящую в основном из целлюлозы и других неперевари-ваемых полимеров клеточных стенок растений. Клетчатка, хотя и не переваривается и, следовательно, не участвует в метаболизме, необходима для правильной перистальтики кишечника. [c.813]

    Значение фосфатидов. Как уже указывалось, лецитин, подобно другим фосфатидам и нейтральным жирам, может легко синтезироваться в организме человека и животных. Однако, как было установлено в опытах на животных, если недостаточное поступление извне лецитина длится долго и пища при этом бедна белками, в состав которых входит аминокислота метионин, а также жирами, содернсащими незаменимые, не образующиеся в организме ненасыщенные жирные кислоты, то с течением времени развивается жировое перерождение печени. [c.316]

    Нафтохинолин 3—402 Нафтохиноны 3—402 2—759 5—683 Нашатырный спирт 1—199 Небензольные ароматические системы — см. Ароматические системы Небурон 3—331 Невьянскит 2—326 4—722 Негатив 3 — 404 5 — 537 Негативный процесс — см. Фотография Недоокись углерода 3—404 Незаменимые аминокислоты 3—405 Незаменимые жирные кислоты 3—406 Неионогенные вещества 1—666, 683  [c.570]

    Слизистая оболочка рубца не образует собственных ферментов и процесс переваривания пищи полностью происходит с помощью ферментных белков, вырабатываемых микроорганизмами. В результате жизнедеятельности микрофлоры в преджелудках жвачных животных гидролизуются практически все формы сложных углеводов (крахмал, пектиновые вещества, гемицеллюлозы, клетчатка, дисахариды), белки и липиды, подвергаются брожению моносахариды (глюкоза, фруктоза, манноза). Образующиеся в результате гидролиза сложных веществ моносахариды, аминокислоты и жирные кислоты используются животными в качестве источников энергии и в биосинтетических процессах. Сами микроорганизмы после их отмирания также перевариваются в рубце и становятся для животных источниками полноценных белков, незаменимых аминокислот, полиненасыщенных жирных кислот, витаминов. [c.295]

    Биологическое действие. Витамин РР (никотиновая кислота) участвует в окислительно-восстановительных реакциях, являясь составной частью коферментов НАД и НАДФ — переносчиков атомов водорода. Эти коферменты участвуют в анаэробном и аэробном окислении углеводов, в образовании гликогена в печени, синтезе жирных кислот и фосфолипидов, обмене аминокислот, нормализуют содержание холестерина в крови. В организме РР частично синтезируется из незаменимой аминокислоты триптофана (провитамина РР). [c.121]

    Жирные кислоты с разветвленной углеродной цепью синтезируются из продуктов метаболизма аминокислот с разветвленной цепью (валин, изолейцин и лейцин) через ацильные производные КоА путем удлинения цепи и при участии АПБ. Особенности биосинтеза полиненасыщенных жирных кислот представляют интерес в связи с их витаминоподобными функциями (см. главу 3). Некоторые полиеновые кислоты могут синтезироваться из олеиновой кислоты с помощью ряда последовательных реакций. Однако синтез полиненасыщенных кислот, содержащих двойные связи, расположенные между конечным метилом и седьмым атомом углерода, невозможен, поэтому они и являются незаменимыми в пищевом рационе. [c.438]

    В дополнение к указанным выше мы приведем еще четыре примера, иллюстрирующих широту диапазона возможных применений биохимии. 1. Анализ механизма действия токсина, продуцируемого возбудителем холеры, позволил выяснить важные моменты в отношении клинических симптомов болезни (диарея, обезвоживание). 2. У многих африканских растений содержание одной или нескольких незаменимых аминокислот весьма незначительно. Выявление этого факта позволило понять, почему те люди, для которых именно эти растения являются основным источником белка, страдают от белковой недостаточности. 3. Обнаружено, что у комаров— переносчиков возбудителей малярии—могут формироваться биохимические системы, наделяющие их невосприимчивостью к инсектицидам это важно учитывать при разработке мер по борьбе с малярией. 4. Гренландские эскимосы в больших количествах потребляют рыбий жир, богатый некоторыми полиненасыщенными жирными кислотами в то же время известно, что для них характерно пониженное содержание холестерола в крови, и поэтому у них гораздо реже развивается атеросклероз. Эти наблюдения навели на мысль о возможности применения по-линенасыщенных жирных кислот для снижения содержания холестерола в плазме крови. [c.11]

    По тем же (рассмотренным выше) причинам, по которым прямое превращение жирных кислот в углеводы оказывается невозможным, исключается также возможность превращения жирных кислот в глюкогенные аминокислоты. Невозможно также обращение пути распада кетогенных аминокислот. Все они относятся к категории незаменимых аминокислот. Превращение углеродных скелетов глюкогенных аминокислот в жирные кислоты возможно либо путем образования пирувата и ацетил-СоА, либо путем обращения внемитохондриальных реакций цикла лимонной кислоты на участке от а- [c.296]

    Среды Р-10 и Р-12 содержат все описанные выше незаменимые компоненты, включая микроэлементы Ре, Zn, Си, а также заменимые аминокислоты, пируват, предшественники нуклеиновых кислот и липоевую кислоту. Р-12 отличается наличием линолевой кислоты и путрисцина. Ненасыщенные жирные кислоты, к которым относится линолевая, незаменимы при бессывороточном культивировании, хотя клетки многих адаптированных постоянных линий могут размножаться без них. В коммерческих препаратах Р-12 линолевая кислота часто наудится в неактивной форме, так как легко окисляется в таких случаях ее надо добавить. Избыток жирных кислот токсичен, поэтому их часто вводят в комплексе с сывороточным альбумином. Путрисцин или другие полиамины необходимы клеткам СНО и способствуют размножению клеток других типов. Высокая концентрация цинка в F-12, оптимальная для СНО, токсична для некоторых других клеток. [c.56]

    Пищевые вещества выполняют преимущественно две функции 1) они являются источником энергии для процессов жизнедеятельности 2) они необходимы для построения и обновления живых структур, поддержания и регуляции обмена веществ. Первая функция ха рактеризует энергетическую (калорииную) ценность рациона вторая — его пищевую ценность, зависящую от присутствия в пище незаменимых пищевых веществ (витаминов, минеральных солеи и микроэлементов, незаменимых аминокислот и эссенциальных жирных кислот) [c.4]

    Уже к 1820 г. было установлено, что белки гидролизуются, и Бра-конно выделил из гидролизата простейшую а-аминокислоту — а-ами-ноуксусную (за свой сладкий вкус и происхождение из желатина, т. е. из белкового клея костей, она была названа гликоколом, а позднее — глицином). Далее из гидролизатов белков были выделены и другие аминокислоты, и вплоть до середины XX века продолжалось открытие более экзотических аминокислот. В 90-х годах прошлого века Э. Фишер разработал свой метод исследования аминокислотного состава гидролизатов белков. Метод Фишера состоит в том, что смесь аминокислот, полученную в результате гидролиза с помощью концентрированной соляной кислоты, превращают этерификацией посредством этанола и НС1 в сложные эфиры аминокислот, освобождают их от солеобразно связанной НС1 путем добавления щелочи и разделяют эфиры фракционной перегонкой в вакууме. Такой препаративный метод, несмотря на то что он далек от совершенства (потеря от /з ДО /г всей массы аминокислот), был большим шагом вперед. Вскоре было выяснено, что в состав подавляющего большинства исследованных белков входят -а-аминокислоты из числа помещенных в табл. 88, и лишь редкие белки содержат какие-либо аминокислоты сверх этих. В таблице выделены жирным шрифтом незаменимые в пище человека и животных аминокислоты, потребление которых должно составлять в сумме 21—31 г в сутки. Остальные аминокислоты организм способен синтезировать сам, если ему доставляется с пищей источник азота (например, в виде глутаминовой кислоты). Эти аминокислоты требуются в количестве [c.654]


Смотреть страницы где упоминается термин Незаменимые аминокислоты жирные кислоты: [c.99]    [c.27]    [c.370]    [c.298]    [c.209]    [c.209]    [c.360]    [c.14]    [c.152]   
Химия (1978) -- [ c.406 ]




ПОИСК





Смотрите так же термины и статьи:

Аминокислоты жирного

Аминокислоты незаменимые



© 2025 chem21.info Реклама на сайте