Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент ступени

    Важной проблемой является изучение условий получения стабильной формы напорной характеристики центробежных насосов. Представляется целесообразным по результатам обработки статистических данных по выполненным насосам определить осредненные зависимости для оптимальных геометрических соотношений элементов проточной части ступеней с различными п . Используя выражение для действительного напора ступени, можно исследовать возможность перемещения точки характеристики с максимальным напором вдоль оси подач. Для определения оптимальных соотношений между параметрами и характерными коэффициентами ступеней различных типов эффективнее всего использовать ЭВМ. [c.49]


    Однако, исходя из практических соображений, основанных на том, что, с одной стороны, коэффициенты ступени низкого давления меньше, а с другой стороны, холодопроизводительность машины определяется ступенью низкого давления, отношение давлений ступени низкого давления желательно иметь возможно меньшим. [c.225]

    Объемный коэффициент ступени сжатия [c.253]

    Наименьшая производительность при плавном динамическом регулировании зависит от длительности фазы закрывания клапана, несущего массу отжимного органа, по отношению ко времени одного оборота вала. Она зависит также от потери давления при выталкивании газа через всасывающий клапан и от величины объемного коэффициента ступени или полости, оборудованной таким регулирующим устройством. Величина наименьшей производительности обычно составляет 30—40% от полной производительности. [c.530]

    РАБОТА, К. П. Д. И ХАРАКТЕРИСТИЧЕСКИЕ КОЭФФИЦИЕНТЫ СТУПЕНИ [c.172]

    При перегревании всасываемого пара ступени низкого давления увеличиваются коэффициенты компрессора. Вследствие этого в расчетах фреоновых компрессоров принимают коэффициенты ступени низкого давления такими же, как ступени высокого давления. [c.224]

    Степень приближения контактирующих фаз к равновесию, реализуемая в практической ступени, условно определяется как ее эффективность или коэффициент полезного действия. [c.122]

    Аналогично из точки с абсциссой Хт=0,555, лежащей на прямой концентраций отгонной секции, в промежуток между кривой равновесия и оперативной линией последовательно вписываются наклонные и вертикальные ступени до достижения точки (хд, 0). И здесь наклонные линии имеют угловой коэффициент, равный —5. [c.205]

    Эта задача сводится к определению сравнительной эффективности или коэффициента полезного действия реальной тарелки, являющегося переходным фактором от теоретической ступени контакта к реальной. [c.208]

    Решая уравнения (V.11), находим концентрационные и температурные профили, из которых с учетом изменения активности катализатора во времени и коэффициента запаса определяем необходимую высоту насадки в v-ступени. [c.111]

    До сих пор нами не принималась во внимание роль коэффициента распределения. Если эта величина не зависит от концентрации, то определение числа ступеней равновесия не сложно [13]. [c.175]

    В ходе этих рассуждений мы имели дело с системой, которая характеризуется постоянным коэффициентом распределения. Если же коэффициент распределения зависит от концентрации, т. е. если линия равновесия кривая, то расстояние от нее до рабочей линии не будет постоянным. В соответствии с этим при заданном переносе потребуется больше или меньше ступеней равновесия по сравнению со случаем, когда линия равновесия прямая. Такой случай представлен на рис. 10-19. [c.177]


    Зависимость между числом ступеней равновесия и коэффициентом флегмы дана на рис. 15-7. Известно, что сумма первого члена правой части уравнения (15-47) с увеличением числа тарелок возрастает, а с увеличением коэффициента флегмы монотонно убывает, причем второй член правой части этого уравнения с ростом монотонно повышается. В результате взаимодействия этих противоположных тенденций при определенном значении коэффициента флегмы получается минимум себестоимости (рис 15-8). При каком значении Кц получится этот минимум, будет зависеть от величины экономических коэффициентов. [c.329]

    Общее количество растворителя в обоих случаях одинаково. На каждой ступени процесс проводится до состояния равновесия, определяемого коэффициентом распределения экстрагируемого вещества в двух жидкостях. Представленная на рис. [c.363]

    КПД И КОЭФФИЦИЕНТЫ ПОТЕРЬ ЭЛЕМЕНТОВ СТУПЕНИ [c.59]

    Коэффициент эффективной работы и КПД ступени [c.67]

    Как показали опыты на ступенях холодильных компрессоров, работающих при М = 1,0ч-1,6 и М , = 0,7ч-1,05, вследствие сильного влияния сжимаемости и возникновения в каналах колеса сверхзвуковых течений при фиксированных значениях (р2 наблюдается снижение фо с ростом М ,,. Поэтому зависимость для коэффициента теоретической работы следует представлять в виде [c.90]

    Рассмотрим метод обработки результатов эксперимента, если известна характеристика ВРА (3.9). Измерены массовый расход О и статическое давление на выходе из колеса р2. Известны все параметры в предыдущих сечениях, геометрия колеса и интегральная характеристика ступени. Из уравнения (3.14) определяем коэффициент фщ = С1, /и2, задаем в качестве первого приближе- [c.90]

    Уравнение (3.19) получено непосредственно из определения коэффициента реактивности и связывает перепад энтальпий в рабочем колесе с полной удельной работой ступени I  [c.91]

    Охлаждающая вода подается в газовый теплообменник через вентиль 9, с помощью которого регулируется ее расход. Для контроля расхода установлен блок ротаметров 10, которые при необходимости можно соединять параллельно. Один из ротаметров должен иметь небольшой диапазон измерения расхода, так как в зимнее время, когда температура воды составляет 1—4 С, расход может быть очень малым. От точности дозирования расхода в значительной степени зависит стабильность температуры газа ири входе в ступень и перед диафрагмой, которая сильно влияет иа точность определения перепада температур в ступени и, значит, на погрешность определения ее КПД и коэффициента теоретической работы. [c.126]

    Обратный направляющий аппарат. Скорости газа в обратном направляющем аппарате (ОНА) обычно невелики, а числа Маха Мс при входе иа лопатки не превышают 0,2—0,3. Поэтому коэффициент потерь ОНА является одномерной зависимостью t4-e = / ( 4)- Типичная характеристика ОНА показана на рис. 4.24 [14], причем для того чтобы ее получить, необходимо проводить исследования с безлопаточным диффузором или с лопаточным, имеющим поворотные лопатки. При исследовании ОНА в ступени с лопаточным диффузором, имеющим неподвижные лопатки и, значит, практически постоянный угол потока при входе в ОНА, может быть получена только одна точка этой характеристики. [c.159]

    Создание всего комплекса моделей представляет собой сложную задачу, которую невозможно выполнить в одной работе, особенно если принять во внимание многообразие компрессорных систем, применяемых в различных отраслях промышленности. Синтезу характеристик многоступенчатого центробежного или осевого компрессора по характеристикам ступеней посвящены некоторые известные работы [12, 23]. Поэтому основное внимание мы уделим моделированию характеристик ступени центробежного компрессора. В моделях элементов проточной части использованы опытные данные по потерям и коэффициенту теоретической работы колеса, представленные в виде аналитических аппроксимаций (см. гл. 4). Такой подход способствует развитию принятой [c.181]

    Для определения области работы ступени на заданном режиме необходимо знать границы характеристик, т. е. наибольшую и наименьшую возможные производительности. Из многочисленных экспериментальных данных известно, что минимальная производительность ступени, после которой начинается помпаж, определяется в основном диффузором. В ступенях с лопаточным диффузором вращающийся срыв, а затем и помпаж наступают при значениях коэффициента диффузорности косого среза = [c.195]

    Сложнее обстоит дело с определением верхней границы характеристики, или наибольшей производительности ступени на данном режиме, которая может определяться рабочим колесом, лопаточным диффузором (особенно при регулировании поворотом его лопаток в сторону меньших углов) или обоими этими элементами вместе. Ранее уже упоминалось, что в процедурах определения коэффициентов потерь элементов проточной части при выходе за границу аппроксимации искомой величине присваивается ее значение на границе. Иными словами, двумерная аппроксимация представляет собой как бы лунку на бесконечной поверхности, причем значения величин за пределами лунки равны их значениям на ее границах, т. е. постоянны и не зависят от координат. Это необходимо было сделать, чтобы исключить получение физически неоправданных величин при выходе за границы аппроксимации и обеспечить нормальное течение вычислительного процесса. Такое допущение позволяет выполнить расчет параметров ступени при любой производительности, хотя результаты могут заведомо отличаться от практически возможных. Поэтому особое значение имеет правильное определение верхней границы характеристики. Для этого необходимо найти по отдельности наибольшую производительность рабочего колеса и лопаточного диффузора. Наименьшая из них и будет верхней границей характеристики данной ступени. [c.195]


    При малых значениях ку и достаточно высоких М и М ,, наибольшая производительность ступени определяется рабочим колесом. Оно работает в предельном режиме, соответствующем запиранию входных сечений межлопаточных каналов. Увеличение ку приводит к смещению режима от наибольшей производительности в сторону больших 11, вследствие чего наибольшую производительность ступени начинает определять лопаточный диффузор. Минимальные значения коэффициентов потерь колеса и диффузора при изменении ку мало отличаются по величине, вследствие чего и КПД ступени практически не зависит от ку. Однако из этого результата, справедливого для данного частного случая, нельзя делать обобщающих выводов для всех возможных вариантов ступеней. Если в этой ступени повернуть лопатки диффузора на меньший угол и сдвинуть области совместной работы колеса и диффузора в сторону больших значений /1, то и в этом случае каждая область будет располагаться тем левее, чем больше ку. Если принять во внимание характер зависимостей Со-п = = f (й, М ,,) в области больших углов натекания 1, то увеличение означает возрастание а значит, КПД такой ступени с повышением ку будет понижаться. Этот краткий анализ показывает, во-первых, что влияние ку на характеристики ступеней центробежного компрессора неоднозначно и, во-вторых, что в области ку = 1,12- 1,25 характеристики ступени от ку практически не зависят. Это дает возможность, в частности, распространять результаты исследований ступеней холодильных центробежных компрессоров, получаемые при работе на наиболее распространенных веществах К12 или Н22, ка все хладагенты и другие рабочие вещества, у которых ку находится в этих пределах. Эксперимент хорошо подтверждает эти выводы [35). [c.209]

    Условное обозначение марки электронасоса типа ХГВ расшифровывается следующим образом цифра, стоящая перед буквенным обозначением, определяет диаметр напорного патрубка в мм, уменьшенный в 25 раз буквы обозначают X — химический, Г — герметичный, В — вертикальный цифра, стоящая за буквенным обозначением, определяет коэффициент быстроходности, уменьшенный в 10 раз цифра, стоящая после знака умножения, обозначает количество ступеней центробежного насоса (в одноступенчатых насосах з[[ак умножения и цифра 1 не проставляются) буква, стоящая у цифры, указывающей коэффициент быстроходности в одноступенчатых насосах, или у цифры, указывающей количество ступеней насоса, условно обозначает материал проточной части электронасоса  [c.178]

    Увеличение давления всасывания в последнюю ступень вызовет повышение давления нагнетания предпоследней ступени и увеличение степени повышения давления газа в ней. Последнее уменьшит объемный коэффициент ступени, всасываемый в нее объем и несколько увеличит давление всасьшания, величина которого определится также уравнением (540). [c.360]

    При двухступенчатой холодной сепарации (см. рис. И, 12) в пер вой ступени выделяется циркулирующий водородсодержащий га прп 40 —50 °С. Давление в сепараторе зависит от требуемого давленш в реакторе и возможной потери давления газа в сети перед подачез в сепаратор. Во второй ступени из гидрогенизата выделяется раство репный углеводородный газ. Давление в сепараторе второй, стунен складывается из давления в колонне стабилизации и давления, ко торое необходимо для подачи гидрогенизата в колонну. Наличие второй ступени сепарации гарантирует исключение прорыва сред1 высокого давления в стабилизационную колонну кроме того, сниже ние доли неконденсирующихся компонентов в верхнем продукт колонны улучшает коэффициент теплопередачи в конденсаторе холодильнике. [c.72]

    При ректификации снстем блпзкокнпящих пощестм, характеризующихся сравнительно небольшим коэффициентом относительной летучести а, расчет необходимого числа контактов как путем аналитического перехода от тарелки к тарелке, так и графическим путем весьма затрудняется вследствие очень большого числа отдельных ступеней процесса. [c.212]

    Связг. между найденным из расчета числом теоретических ступеней контакта и числом практических тарелок колонны устанаилииается при помощи коэффициента полезиого действия тарелкн. [c.226]

    В одном из патентов [38] описана схема, в которой адсорбент непрерывно пропускается в последовательном порядке через песколько зон контакта, В каждой зоне адсорбент находится во взвешенном состоянии. Адсорбент выпускается из зоны, отделяется от жидкости и затем вводится в следующую зону. Жидкость последовательно пропускается через зоны контакта в противоположном направлении. В каждой зоне по существу происходит процесс контакт шго взаимодействия, однако, чтобы достигалась желаемая степень разделения, число зон должею быть достаточно большим. Можно тaIiжe производить орошение. Анализ процесса можно выполнить при помощи диаграммы Мак-Кэба-Тиле, в которой состав внутрипоровой жидкости заменяется составом пара. Целесообразно пользоваться объемными, а не молярными концентрациями. Существенное различие при этом заключается в том, что рабочие линии процесса могут находиться в любом месте диаграммы, а линия, проходящая под углом 45° к осям, не имеет особого интереса. Число ступеней на такой диаграмме представляет собой теоретическое число зон контакта. Степень приближения к равновесию на каждой ступени экврхвалентна коэффициенту полезного действия тарелки. Можно определить среднее время, необходимое для достижения различных степеней приближения к равновесию, и рассчитать, каково должно быть оптимальное соотношение между числом ступеней и их емкостью. [c.164]

    Однако в этом случае применение регулирования поворотом лопаток диффузора или серии диффузоров, отличающихся только углом установки лопаток при неизменном их числе, одних и тех же профиле и остальных геометрических соотношениях, потребует получения для каждого варианта своей характеристики с последующей интерполяцией на промежуточные углы установки лопаток, не охваченные экспериментом. Такой путь в принципе возможен, но трудоемок и сложен, поэтому необходимо использовать параметры, которые позволят обобщить характеристику диффузора с различными углами з в единую зависимость. Для лопаточного диффузора таким параметром оказался коэффициент диффузорности косого среза тг . сз. введенный ранее для канальнолопаточных диффузоров [61 и затем проверенный для ряда лопаточных диффузоров. Обобщив опытные характеристики диффузоров с углами азл = П-ь20° (см. табл. 4.2), полученные при исследовании ступеней с колесами, углы Рал которых равны 22° 30, 45°-2 и 90° (см. табл. 4.1) [7], можно видеть, что при Мс, = on.st характеристики всех диффузоров в составе разных колес ложатся на одну линию в координатах = / ( к. сз) (рис. 4.21). При 3 < 1Г и азл > 20° характер изменения = = / ( к.с.ч) в целом такой же, однако сами значения несколько выше, что легко можно учесть введением поправочных коэффициентов, полученных опытным путем. [c.155]

    Для перехода к расчету параметров потока во входном устройстве -й ступени введен переключатель ДЗ (I ]. Он содержит пока всего одну метку Д31, что соответствует одноступенчатому варианту. Операторы ]3—15 определяют параметры потока на участке н—9, операторы 16—18 — на участке 9—0. Оба обращения к процедуре ПАТР предусматривают определение коэффициента потерь двумерной аппроксимацией, поэтому ИД = 2, а параметры В1 и С1 приняты равными нулю. Параметры NH9,. .., АН9 и N90,. .., А90 определяют массивы коэффициентов аппроксимаций, по которым следует проводить вычисления. Площадь F9 при выходе из решетки ВРА должна быть известна перед входом в процедуру ВХОДУСТР, поэтому в первом обращении к ВРА принято ИР = 0. Площадь потока F0 (Р ) рассчитывается непосредственно в теле процедуры ПАТР, поэтому при втором обращении HF = 1. Значения углов ТЭТАЛ (0л) и ТЭТАО (Во) должны быть найдены перед входом в процедуру. Если ступеней больше одной, то в переключательный список нужно ввести необходимые метки Д32, ДЗЗ,. .., а после оператора 18 под этими метками снова записать обращение к процедурам ПАТР, введя в них соответствующие формальные параметры, и завершить каждую группу обращений переходом к метке М2  [c.188]


Смотреть страницы где упоминается термин Коэффициент ступени: [c.510]    [c.251]    [c.181]    [c.181]    [c.193]    [c.18]    [c.58]    [c.440]    [c.69]    [c.82]    [c.95]    [c.162]   
Теоретические основы типовых процессов химической технологии (1977) -- [ c.490 ]




ПОИСК





Смотрите так же термины и статьи:

Ступень

Ступень ступени



© 2025 chem21.info Реклама на сайте