Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аномально-вязкие жидкости

Рис. 4.4. Тиксотропные и гистерезисные эффекты в процессе течения аномально вязких жидкостей Рис. 4.4. Тиксотропные и <a href="/info/793821">гистерезисные эффекты</a> в процессе <a href="/info/318208">течения аномально вязких</a> жидкостей

    ОСОБЕННОСТИ ТЕЧЕНИЯ ПСЕВДОПЛАСТИЧНЫХ АНОМАЛЬНО ВЯЗКИХ ЖИДКОСТЕЙ [c.172]

    Аномалия вязкости может благоприятно влиять на уменьшение сопротивлений при работе механизмов. В результате снижения вязкости масла (смазки) с ростом скорости его деформирования увеличение энергетических затрат на деформирование замедляется. Иными словами, чтобы вдвое увеличить объем перекачиваемой по трубопроводу ньютоновской жидкости, необходимо вдвое увеличить перепад давления (при ламинарном течении). Для аномально вязкой жидкости, в частности для загущенных масел и пластичных смазок, удвоение перепада давления приведет не к двукратному, а к существенно большему увеличению расхода. [c.277]

    На этих участках НДС соответствует по своей консистенции состояниям геля и молекулярному раствору высокомолекулярных соединений нефти. На участке АБ нефть находится в состоянии аномально-вязкой жидкости. [c.44]

    Эффективная вязкость - коэффициент вязкости аномально вязкой жидкости, определенный при данных напряжении сдвига (или градиенте скорости сдвига) и температуре. [c.408]

    Неньютоновские (аномально вязкие) жидкости [c.164]

    При концентрации растворенного полимера, большей 1л1 , в растворах существенно возрастает вероятность взаимных контактов макромолекул, обусловливающая интенсификацию межмолекулярных взаимодействий и, как результат, возникновение аномалии вязкостных свойств. Характерной особенностью таких растворов является существенное подавление термодинамической гибкости сольватированных макромолекул и все более отчетливое проявление кооперативного характера изменений структуры растворов при тепловых и (или) механических воздействиях изменение конформации индивидуальной цепи определяется возможностями, которые обеспечивают ей соседние сольватированные макромолекулы. Полимеры в вязкотекучем состоянии представляют собой псевдопластичные аномально вязкие жидкости. [c.172]

    В последнее десятилетие методами линейной теории устойчивости проведен анализ стабильности течения при изотермических условиях вытяжки при наличии явления резонанса. Пирсон и Шах 112] исследовали поведение неэластичных жидкостей. Установлено, что для ньютоновских жидкостей критическое значение кратности вытяжки составляет примерно 20,2. Для аномально-вязких жидкостей критическая кратность вытяжки оказывается несколько меньше [c.565]


    Для многих коллоидных растворов, суспензий и растворов ВМВ вязкость не остается постоянной при изменении давления. У этих систем произведение р1 снижается с увеличением р (см. рис. 23.7, 2). Это свидетельствует о том, что и вязкость падает. Такое отклонение от законов Ньютона и Пуазейля вызывается наличием структурной вязкости у подобных систем. Структурная вязкость — это дополнительная (к ньютоновской) вязкость, обусловленная добавочным сопротивлением течению со стороны внутренних пространственных структур — сеток, нитей, крупных капель эмульсий и т. п. Структурированные системы относятся к пластичным телам. Вязкость таких систем с увеличением давления уменьшается вследствие разрушения структуры. На рис. 23.7 видно, что при повышении давления в широком интервале уменьшение значений р1 н ц продолжается до некоторого предела, после чего обе эти величины становятся постоянными. Область постоянства вязкости аномально вязких жидкостей называют псевдопластической областью. Дальнейшее повышение давления вызывает увеличение р1 (и т]) (см. рис. 23.7,2), но это отклонение связано уже с турбулентностью. У аномально вязких коллоидных систем турбулентность обычно наступает раньше при меньших значениях давления, чем у ньютоновских жидкостей. [c.386]

Рис. 11.21. Эпюры напряжений сдвига при прямолинейно-параллельном установившемся вынужденном изотермическом течении аномально-вязкой жидкости. Рис. 11.21. <a href="/info/901883">Эпюры напряжений сдвига</a> при <a href="/info/318205">прямолинейно-параллельном</a> установившемся вынужденном <a href="/info/1749575">изотермическом течении аномально-вязкой</a> жидкости.
    Экспериментальные данные показывают, что коллоидные аномально вязкие системы могут течь и при очень малых давлениях и при этом вязкость остается постоянной, но очень высокой. Скорость такого течения чрезвычайно низка и его называют ползучестью. Для ползучести характерно перемещение аномально вязкой жидкости без нарушения связей и структур внутри жидкости. Ползучесть свойственна и псевдопластическим твердообразным системам. [c.386]

    Неньютоновская (аномально-вязкая) жидкость [c.20]

    Неньютоновская (аномально-вязкая) жидкость 20 [c.75]

    Наиболее точно реальную физическую картину процесса экструзии отражают реологические модели. Реальное движение расплава полимера в зоне дозирования — это трехмерное неизотермическое течение аномально вязкой жидкости. [c.639]

    И.Э. Груздевым получено уравнение для расчета производительности дозирующей зоны экструдера при изотермических условиях течения аномально вязкой жидкости со сложным сдвигом  [c.639]

    В зоне пластикации осуществляются решающие процессы обработки материала. Вследствие сопротивления головки, а также переменного объема винтовой канавки червяка в цилиндре материал находится под давлением и за счет сцепления с рабочей поверхностью вращающегося червяка и неподвижной поверхностью цилиндра вовлекается в сложное движение. Деформации сдвига по мере перемещения материала к головке все больше и больше проникают в его глубину. Создается поток материала, который проявляет свойства аномально-вязкой жидкости. Переработка материала в этой зоне машины носит гидродинамический характер. Это и положено в основу современной теории работы червячной машины. В зоне пластикации происходит основной нагрев материала здесь материал доводится до такого состояния, чтобы его можно было формовать с минимальной затратой усилий. [c.175]

    В отличие от ньютоновских жидкостей, где величина т] характеризует вязкость, для аномально-вязких жидкостей, которыми являются расплавы большинства полимеров, величина т] является лишь аналогом вязкости, и носит название коэффициента консистенции. [c.36]

    Реальные смесители. В вышеизложенном рассмотрении принималось, что дисперсионная среда является вязкой или аномально вязкой жидкостью. Однако при проведении реального процесса смешения в закрытых роторных смесителях типа Бенбери нельзя, как отмечает Берген 29] не учитывать пластические и эластические свойства реального материала. Картина течения при этом чрезвычайно усложняется и иногда сводится к колебательным движениям неустойчивого, случайного (статистического) характера. [c.135]

    К сожалению, такая строгая постановка задачи часто оказывается практически невозможна, и при математическом описании реальных, производственных процессов приходится прибегать к существенным упрощениям. При этом значительную помощь в создании математических моделей процессов переработки оказывает анализ более простых случаев движения аномально-вязких жидкостей. Такой прием вполне допустим. Он позволяет независимо устанавливать основные закономерности наиболее простых случаев одномерного изотермического и неизотермического течения псевдопластичных жидкостей, выбранных в качестве математического аналога полимерных расплавов, Этим вопросам посвящена П глава монографии. В ней показано, [c.9]


    I — ньютоновская жидкость 2 — аномально-вязкая жидкость. [c.17]

    Жидкости, вязкость которых зависит от режима течения, принято называть аномально-вязкими жидкостями, а само явление — аномалией вязкости. [c.18]

    Для аномально-вязких жидкостей чисто формально можно представить связь между скоростью сдвига и напряжением сдвига в виде выражений  [c.18]

    Выше мы отмечали, что большинство расплавов обладает свойствами аномально-вязких жидкостей. Представим зависимость скорости сдвига, от напряжения сдвига в обычных координатах (см. рис. 1.5). Кривая течения расплава, обладающего свойствами ньютоновской жидкости, в этих координатах изображается прямой с угловым коэффициентом, равным 1/т], где т] — ньютоновская вязкость. Для расплава со свойствами аномально-вязкой жидкости кривая течения выгнута по направлению к оси напряжений. [c.47]

    Для ньютоновской жидкости величина р, характеризует вязкость. Для аномально-вязких жидкостей величина [х не имеет столь четкого физического смысла. Она является своеобразным аналогом вязкости и обычно называется коэффициентом консистенции. [c.48]

    АНОМАЛЬНО-ВЯЗКОЙ ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ [c.81]

    Установившееся течение аномально-вязкой жидкости в круглой трубе — это простейший случай движения расплава, на примере которого мы подробно рассмотрим метод использования кривых течения для определения основных характеристик потока объемного расхода и перепада давления. С движением такого рода приходится встречаться в рабочих органах капиллярных вискозиметров, а также при проектировании головок грануляторов. [c.81]

    Анализ уравнения (11.42) показывает, что в случае ньютоновской жидкости (tt = 1) эпюра скоростей установившегося течения имеет форму параболы второй степени (рис. II.5). По мере увеличения аномалии вязкости форма эпюры скоростей изменяется. В центральной части потока образуется все более широкий участок, в пределах которого скорость изменяется незначительно. Особенно четко это видно, если сопоставить друг с другом эпюры градиентов скорости в различных участках потока (рис. II.6). Иначе говоря, с увеличением индекса течения картина течения потока все больше напоминает течение стержневого типа, при котором центральная часть потока движется как жесткий недеформируемый стержень, окруженный слоем деформирующейся жидкости. Эта особенность течения аномально-вязких жидкостей является, по-видимому, причиной того, что у расплавов и резиновых смесей, как указывали некоторые иссле-дователи анализируя экспериментальные данные, существует предел текучести. [c.83]

    Уравнение (II.44) лежит в основе всей современной капиллярной вискозиметрии аномально-вязких жидкостей. Величина напряжений сдвига, действующих у стенки трубы, определяется непосредственно из уравнения (II.39)  [c.83]

    Из уравнения (II.88) следует, что независимо от значения реологических констант распределение напряжений в одномерном потоке аномально-вязкой жидкости (не обладающей эластичностью) линейно. [c.103]

    Анализ полученного решения показывает, что при значении е = 0,3 температура в центре потока в случае ньютоновской жидкости оказывается примерно равной температуре стенки, а в случае аномально-вязкой жидкости — даже ниже, чем температура у стенки (рис. 11.31). Это снижение температуры обусловлено эффектом охлаждения, являющегося следствием адиабатического расширения расплава. Влияние аномалии вязкости проявляется в том, что с увеличением п область интенсивного тепловыделения сужается. Это и приводит к дальнейшему понижению температуры. Учет зависимости вязкости от температуры должен привести к дальнейшему уменьшению расчетного значения интенсивности тепловыделения в пристенном слое, поскольку увеличение температуры всегда сопровождается падением вязкости. Поэтому можно считать, что профиль температур будет еще сильнее выравниваться и перепад температур по сечению окажется невелик [c.133]

    Впоследствии задача о винтовом движении аномально-вязкой жидкости неоднократно рассматривалась в ряде отечественных и [c.205]

    При малых нагрузках (обычно при напряжениях сдвига до 50—500 Па) смазки деформируются, подчиняясь закону Гука. Повышение напряжения сдвига (т) приводит к пропорциональному увеличению обратимой линейной деформации (7) испытуемого образца смазки. Дальнейшее увеличение напряжения сдвига (увеличение деформации) приводит к отклонению от линейной зависимости т = /(-у). Одновременно деформация становится не вполне обратимой. При еше большем увеличении напряжения сдвига наиболее слабые связи между частицами загустителя начинают разрушаться. Однако нри этом происходит обратный процесс — установление и упрочнение новых связей между частицами загустителя, приходящими в соприкосновение друг с другом (напрпмер, под действием теплового движения). При малых нагрузках процессы разрушения и восстановления связей компенсируют друг друга. По мере возрастания напряжений сдвига скорость разрушения контактов в структурном каркасе увеличивается и при определенной нагрузке начинает заметно преобладать над скоростью восстановления связей. Важно также то, что при разрушении заметного числа связей нагрузка на оставшиеся связи даже при неизменном напряжении сдвига возрастает. В результате процесс снижения прочности структурного каркаса смазки приобретает са-моускоряющийся, лавинный характер — это соответствует достижению и переходу через предел прочности. Смазка начинает течь подобно вязкой, точнее аномально вязкой жидкости. [c.271]

    Какими параметрами мо.чсно оценить аномалию вязкостных свойств аномально вязких жидкостей  [c.205]

    Коэффициент вязкости в уравнении сохранен потому, что попже будет рассмотрен метод приближенного описания течения аномально-вязкой жидкости. Если известна функция Н (х), то приведсннос bhuj Дифференциальное уравнение можно разрешить аналитическим или численным методом относительно Р (х), не прибегая к МКЭ. Однако целью данного раздела является демонстрация метода МКЭ. Поэтому, следуя Мееру 1261, покажем шаг за шагом, как находится решение. [c.598]

    ПЛАСТИЧНЫЕ СМАЗКИ (консистентные смазки), мазеобразные смазочные материалы, получаемые введеиием в жидкие нефт. или синт. масла тв. загустителя (мыла, парафина, силикагеля и др.) в кол-ве 5—30% по массе. Частицы загустителя (0,1—10 мкм) образуют пространств, каркас, в ячейках к-рого удерживается масло. При небольших нагрузках (1 10 —5-10 Па) П. с. не стекают с вертикальных пов-стей и из открытых узлов трения, при больших нагрузках ведут себя как аномально-вязкие жидкости. [c.447]

    Аномально-вязкие жидкости делят на три основные группы, псевдопластичные, днлатантиые и бннгамоЕСКие (рис 5 24) Псевдопластичные жидкости характеризуются постепенным уменьшением эффективной вязкости с увеличением скоростн сдвига. [c.309]

    Применение экспериментальных методов для получения 01606 щенных зависимостей в сочетании с математической статистикой, а также с теорией подобия и моделирования позволяет в значительной степени облегчить решение различных задач при разработке режимов приготовления смесей и конструкций нового сме-сительното оборудования. Методы теории подобия и анализа размерностей достигли большой детализации в технологии перемешивания простых и аномально-вязких жидкостей [18]. [c.192]

    При экструзии полимеров у тановлено [13, 14], что использование головок с конусностью не более 10° позволяет избежать большинства дефектов в экструдате, полученном при использовании головки с параллельными каналами. Достаточно простой расчет таких головок приведен в работе [15], где рассмотрены четыре типичных образца головок с линейно-сходящимися каналами. Три из них представляют собой широкощелевые головки с конусностью в вертикальной или горизонтальной плоскости или в обеих плоскостях (типа рыбий хвост ). Внутренняя поверхность четвертой головки образована вращением увлеченного прямого угла. С использованием поправки [16] для закона вынужденного течения аномально-вязкой жидкости в широкощелевых каналах дано основное уравнение течения через щелевую головку без конусности  [c.251]

    Псевдопластики — это системы, у которых отсутствует предел текучести. Типичная особенность их поведения — это постепенное уменьшение эффективной вязкости с увеличением скорости сдвига. Такое поведение характерно для растворов высокополимеров, расплавов, термопластов, каучуков и резиновых смесей. Принято считать, что псевдопластики—это аномально-вязкие жидкости, вязкостные характеристики которых не зависят от продолжительности деформации, т. е. изменение эффективной вязкости со скоростью сдвига происходит столь быстро, что временной эффект не может быть обнаружен методами обычной вискозиметрии. [c.59]


Смотреть страницы где упоминается термин Аномально-вязкие жидкости: [c.275]    [c.20]    [c.382]    [c.29]    [c.84]    [c.108]   
Теоретические основы переработки полимеров (1977) -- [ c.45 ]

Физико-химия полимеров 1978 (1978) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкость аномальные



© 2025 chem21.info Реклама на сайте