Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хром, адсорбция газов катализаторы

    Продукты реакции на выхода из реакционной печи охлаждаются сначала в трубчатом холодильнике до 300—350°, а затем в водяном скруббере до 60—70°, после чего подвергаются промывке натронной известью для удаления из них органических кислот. Охлажденные и очищенные газы пиролиза направляются в ацетиленовый конвертор, в котором на хромо-никелевом катализаторе при температуре около 200° ацетилен гидрируется до этилена. На выходе из ацетиленового конвертора газы компримируются до 18—20 amu, подвергаются промывке маслом, адсорбции углем и обработке щелочью для освобождения от бензиновых углеводородов и СОг и направляются в секцию низкотемпературной ректификации, где из них выделяют этилен, пропилен, бутилен, бутадиен, этан и горючие газы (метан, водород). Горючие газы используют в качестве технологического топлива, а этан возвращают в процесс. [c.53]


    В отработавших газах автомобилей и отходящих газах промышленных производств обычно содержатся СО и N0-самые токсичные компоненты. При их взаимодействии в присутствии катализаторов протекают одновременно две реакции-окисление СО до СО2 и восстановление N0 до N2. Для выяснения механизма этих реакций изучена адсорбция каждого из газов на различных оксидных и металлических катализаторах [26, с. 102-120]. Скорость адсорбции N0 на восстановленных оксидах железа и хрома на 2-3 порядка больше, чем на окисленных. [c.82]

    Фрейндлих предполагает, что скорость реакции сернистого газа с кислородом на катализаторе обусловлена в большей степени адсорбцией катализатором, чем образованием промежуточных соединений возможно образование промежуточных соединений с окислами железа и хрома с окислами алюминия и кремния образование промежуточных соединений невозможно Согласно Фрейндлиху окись углерода замедляет горение, когда оно происходит в адсорбционном слое, через который диффундирует кислород углекислота также может находиться в адсорбционном слое, но не влияет на процесс При обыкновенных и низких температурах В дополнение к адсорбции и диффузии имеется замещение реагирующих веществ продуктами реакции, - это причина замедления и помех при реакции [c.137]

    Переходя теперь к сравнениям между теплотами адсорбции одного и того же газа на разных адсорбентах, следует снова подчеркнуть поразительное отсутствие специфичности в этом отношении. В гл. VI было привлечено внимание к тому, что величины —E , оцененные из изотерм адсорбции па основе теории полимолекулярной адсорбции, были очень близкими для одного и того же газа на весьма разнообразных адсорбентах. В табл. 14 были приведены эти величины для азота на 12 различных адсорбентах, включая непромотированные и промотированные железные катализаторы, медь, окись хрома и силикагель. Среднее из величин чистой теплоты адсорбции составляло 840 кал/моль, и ни одно отдельное значение не отклонялось от него больше, чем на 9%. [c.330]

    Из приведенного краткого образца видно, что применение метода ЭПР к проблемам, связанным с гетерогенным катализом, находится лишь в самом начале своего развития. Большинство работ посвящено изучению структуры катализаторов, в то время как с точки зрения общих представлений о механизме катализа гораздо больший интерес представляет изучение хемосорбции на парамагнитных активных центрах, природы образующейся при этом химической связи и промежуточных активных веществ в ходе каталитического процесса. Большой интерес представляет также намечаю-. щаяся связь каталитической активности с обменными эффектами, которая может быть подробно исследована методом ЭПР. Наиболее четко эта связь прослежена до настоящего времени в случае геля окиси хрома. Если эти наблюдения будут подтверждены на других системах и если удастся показать, что такая взаимосвязь действительно является существенной в сколько-нибудь значительном числе известных каталитических процессов, то откроются совершенно новые возможности подхода к анализу механизма каталитического действия с учетом возможных эффектов дальнодействия в многоэлектронных системах реагенты — катализатор . Дальнейшее развитие этих идей без дополнительных экспериментальных данных в настоящее время вряд ли можно считать целесообразным. Ясно только, что проведение систематических исследований по выяснению при помощи метода ЭПР влияния способов приготовления и тренировки катализаторов, адсорбции различных газов на них, разнообразных методов активации и промотирования и, наконец, самих каталитических процессов на электронные характеристики атомов, входящих в состав этих катализаторов, смогут помочь решению ряда проблем, связанных с этой интереснейшей областью современной химии. [c.212]


    Изотермы адсорГции сккси углсгсда Тейлор и Вильямсон [51Ь], исследуя адсорбцию водорода при давлении 1 мм на катализаторе, состоящем из закиси марганца и окиси хрома, полу- чили две изобары, изображенные на фиг. 12, которые ясно указывают на существование двух адсорбционных процессов с промежуточной областью, где одновременно идут оба процесса. Из-за [НИЗКОЙ температуры активированная адсорбция не достигает равновесия в течение измеримого промежутка времени. Подобные изобары получены для адсорбции газов металлами. [c.99]

    В этой главе мы уже приводили многочисленные примеры, показывающие, что теплоты адсорбции газа на различных адсорбентах приблизительно равны. Для теплоты адсорбции водорода на угле при—185° Дьюар [ ] измерил калориметрически 1600 кал/моль, для водорода на железе Бентон получил из изотерм при —183 и —195° 1600 кал/моль. Для водорода на различных смешанных окисных катализаторах Тейлор и его сотрудники [ > ] нашли теплоты адсорбции в 2000 кал/моль, тогда как Эммет и Гаркнес[ ] получили ту же величину для водорода на железе (изостерические теплоты). Для азота на железе и на окиси хрома Биб и его сотрудники определили калориметрически [c.330]

    На БАСФ Бош попытался восстанавливать монооксид углерода водородом при высоких давлениях, чтобы получить спирты и высшие углеводороды. В 1923 г. эта работа привела к синтезу метанола с использованием промотированной щелочью смеси оксидов цинка и хрома. В 1927 г. Фишер и Тропш получили синтетические углеводороды из монооксида углерода и водорода. К заключению о важности адсорбции реагентов на поверхности катализатора впервые пришли в период 1900—1920 гг. Были предложены механизмы Ленгмюра — Хиншелвуда и Ридила — Или. Адсорбция газов твердыми веществами, и в частности адсорбция водорода, была во многом непонятна. Например, было неизвестно, почему изменяется количество адсорбированного водорода или почему такое вещество, как палладий, может адсорбировать так много водорода. [c.15]

    Тейлор Р. Б. [132], Перри, Кистяковский и Тейлор X. С. [ПО] и Кистяковский, Флосдорф и Тейлор X. С. [76] измерили дифференциальные теплоты адсорбции водорода на катализаторе из окиси цинка и окиси хрома, а также кислорода на платине. Определенно выраженные максимумы на кривых были получены при адсорбции водорода на катализаторе из окиси цинка и окиси хрома, но для адсорбции кислорода на платине максимумов на кривых не было получено. Существование этих максимумов объясняется различно. Тейлор считает, что высокие теплоты адсорбции обусловлены не примесями в адсорбенте, а другими факторами, влияющими на скорость выделения газов из адсорбента. [c.147]

    Подавляющее большинство классических катализаторов, содержащих тяжелые металлы I, II и VIII групп периодической системы (железо, платину, цинк медь и др.) и успешно применшопщхся для дегидрирования спиртов и нафтенов, для процесса получения изопрена оказались непригодными, так как при высоких температурах вызывали крекинг углеводородов [10, 41]. Основные усилия исследователей были направлены на выявление подходяхцих окисных катализаторов, обладающих более мягким действием. Уже в 30-х годах Тейлором с сотрудниками, исследовавшими адсорбцию водорода и других газов окислами металлов при высоких температурах, было показано, что наиболее активными являются окислы хрома и марганца [42]. К аналогичным выводам пришли позднее Толсто-пятова и Баландин [43], рассматривавшие активность и селективность окисных катализаторов дегидрирования в зависимости от энергий связи катализатора с водородом и углеродом. [c.113]

    Уже первые опыты по изучению адсорбции СО на окислах цинка, хрома и марганца показали, что этот газ может адсорбироваться двумя различными способами. При комнатной температуре на ZnO окись углерода адсорбируется обратимо, и ее можно выделить в неизмененном виде, нагревая окись цинка примерно до 100°. Теплота адсорбции, найденная путем калориметрических измерений, лежит в интервале от 10 до 20 ккал-молъ , откуда следует, что здесь, скорее, происходит хемосорбция, а не физическая адсорбция [12]. На окислах МпзОз и МпаОз — СггОз окись углерода адсорбируется необратимо в том смысле, что при нагревании десорбируется СОг-В этом случае теплота адсорбции превышает 30 ккал-молъ- , и, кроме того, после адсорбции СО может адсорбироваться значительное количество кислорода, несмотря на то что небольшое количество его уже было адсорбировано на катализаторе перед адсорбцией окиси углерода [13]. Такая ненасыщен-ность катализатора но отношению к кислороду была тщательно изучена и было установлено, что количество поглощенного кислорода составляет примерно половину количества предварительно адсорбированной окиси углерода. Исходя из результатов калориметрических измерений, приведенных в табл. 8.1, можно постулировать механизм адсорбции и окисления СО, предусматривающий участие поверхностного комплекса OI". Данные [c.317]

    Ожижитель (теплообменник средней зоны 10, ванна вакуумного азота 11, теплообменник холодной зоны 12, эжектор 13, сборники 14 и 15) и блок предварительного охлаждения 7 с азотной ванной 8 размещены в сосудах Дьюара с хорошей тепловой изоляцией. Сжатый до давления 12. .. 15 МПа в компрессоре 1 водород последовательно проходит очистку от масла в угольном фильтре 2, от примесей кислорода в реакторе высокого давления 3 и осушку от влаги в алюмогелевом осушителе 6. В реакторе газообразный водород очищается от примесей кислорода методом каталитического восстановления последнего водородом до воды на металлическом катализаторе никель—хром. В результате охлаждения водорода в холодильнике 4 происходит конденсация паров воды с последующим удалением конденсата во влагоотделителе 5. Каталитическая очистка водорода как правило должна быть на потоке водорода из компрессора и желательна на потоке из электролизного отделения до компрессора (в реакторе низкого давления 16). Водород, осушенный от влаги и очищенный от примесей кислорода, проходит блок предварительного охлаждения 7 (теплообменник теплой зоны, состоящий из водородной и азотной секции), и охлаждается в змеевике, погруженном в ванну жидкого азота, который кипит под атмосферным давлением. После азотной ванны 8 сжатый водород (прямой поток) очищается от примесей азота в угольном адсорбере 9. Применение активированного угля для очистки водорода весьма удобно, так как интенсивность адсорбции резко возрастает с понижением температуры и при температуре, близкой к температуре конденсации адсорбируемого газа, достигает максимума. [c.153]



Смотреть страницы где упоминается термин Хром, адсорбция газов катализаторы: [c.154]    [c.30]    [c.30]    [c.406]    [c.226]   
Структура металических катализов (1978) -- [ c.212 , c.213 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция газов

Катализатор газов

Катализаторы хрома



© 2024 chem21.info Реклама на сайте