Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды бензинов

    Теплота сгорания характеризует способность бензина выделять при полном сгорании то или иное количество тепла. Теплота сгорания может быть отнесена к 1 кг (называемая удельной теплотой сгорания) или к 1 л топлива (объемная теплота сгорания). Различают высшую и низшую теплоту сгорания. При определении высшей теплоты сгорания учитывают тепло, выделившееся при конденсации воды, которая образовалась за счет сгорания водорода, входившего в состав углеводородов бензина. При определении низшей теплоты сгорания это тепло не учитывается. В двигателях внутреннего сгорания температура отработавших газов вьпие температуры конденсации водяных паров, поэтому важно знать низшую теплоту сгорания. [c.74]


    Процесс термического крекинга углеводородов условно можно представить состоящим из трех стадий непосредственно термического крекинга, предварительного нагрева сырья и охлаждения газообразных продуктов реакции и разделения смеси продуктов реакции. Поточная схема процесса термического крекинга мазута изображена на рис. IV-14. Продуктами процесса термического крекинга мазута являются газ, богатый непредельными углеводородами, бензин, легкий и тяжелый газойли и крекинг-остаток. Реакция осуществляется в трубчатых печах, охлаждение и разделение продуктов реакции — в ректификационных колоннах. [c.225]

    Механизм образования нагаров. Большая часть бензина полностью испаряется во впускном трубопроводе двигателя. В парообразном состоянии углеводороды бензина не подвергаются химическим превращениям в предпламенный период и сгорают, не образуя большого количества нагара. Некоторая часть бензина не успевает испариться во впускном трубопроводе и в виде отдельных капелек, иногда в виде тумана попадает в камеры сгорания. Находясь в жидкой фазе, высококипящие углеводороды под действием температуры в предпламенных стадиях могут подвергаться химическим изменениям. Такие изменения, связанные с окислением углеводородов п последующей их конденсацией, полимеризацией и уплотнением продуктов окисления, приводят к появлению высокомолекулярных продуктов, образующих впоследствии нагар. Склонность бензина к нагарообразованию определяется химической стабильностью его высококипящих фракций. Если эти фракции стабильны, то их количество незначительно влияет на нагарообразование, если же нестабильны, то содержание их в полной мере определяет нагарообразующие свойства бензинов. [c.278]

    Принимая во внимание многообразие исходного сырья и высокие требования, предъявляемые к октановым числам и выходам бензина, рассмотрим те реакции различных углеводородов, которые способствуют повышению октанового числа. Для этого остановимся отдельно на реакциях парафиновых, нафтеновых и ароматических углеводородов. Практически в бензинах прямой гонки ароматических углеводородов содержится относительно мало (от 5 до 15%), и поскольку последние обладают высоким октановым числом и достаточно стабильны в процессе каталитического риформинга, то пет необходимости останавливаться подробно на их конверсии. Таким образом, основное внимание будет уделено рассмотрению конверсии парафиновых и нафтеновых углеводородов. В заключение главы будут обсуждены реакции углеводородов бензинов термического крекинга, которые также нуждаются в повышении их октанового числа, и некоторые другие вопросы. [c.164]


    Ароматические углеводороды, образовавшиеся в результате катализа удалялись также, как ароматические углеводороды бензина прямой гонки. Деароматизированные катализаты после промывки и сушки перегонялись над металли ческим натрием и для ннх определялись те же физические показатели, т, е. максимальная анилиновая точка, удельный-вес и показатель лучепреломления, что и до деароматизации катализатов (см. табл. 1). По депрессии анилиновых точек методом ГрозНИИ [25] вычислялось количество образовав--168 [c.168]

    На нефтехимическом заводе в Плоешти применяют смеси алкенов и ароматических углеводородов бензинов или керосинов термического крекинга парафинистых мазутов. [c.342]

    При изучении процессов риформинга наибольший упор делался на разработку методов повышения октановых чисел парафиновых углеводородов бензина. К благоприятным в этом отношении реакциям относятся изомеризация, дегидрирование до олефинов, дегидроциклизация до аро- [c.164]

    В качестве растворителей применяют различные вещества. Так, вода может служить для извлечения из смеси твердых веществ тех пз них, которые растворимы в ней. Различные органические жидкости, такие, как диэтиловый, или серный, эфир, спирт, бензол, хлорированные углеводороды, бензин и другие погоны нефти, часто используются в лабораториях как растворители преимущественно органических, но часто и неорганических веществ. [c.140]

    Выход продуктов гидрирования зависит от состава угля при гидрировании бурых углей из 1 т получают около 0,7 т жидких углеводородов (бензин, керосин). Для получения 1 т бензина необходимо около 1500 Л1 водорода. [c.247]

    Процесс окисления углеводородов бензина кислородом воздуха начинается с момента производства бензина на заводе и продолжается вплоть до сгорания бензина в двигателе. Скорость окисления зависит от температуры. При повышении температуры бензина на 10° С скорость его окисления возрастает в 2,2—2,4 раза. [c.66]

    Проведенное исследование группового углеводородного состава бензинов термического и двухступенчатого каталитического крекинга из Грозненской нефти [42] показало (табл. 2), что эти бензины существенно различаются по содержанию непредельных и ароматических углеводородов. Бензин термического крекинга содержит непредельных 45%, а ароматических П%, тогда как в бензине каталитического крекинга, наоборот, значительно больЩе ароматических (33%) и меньше непредельных (11%) углеводородов. В бензине каталитического крекинга особенно заметно увеличение концентрации ароматических углеводородов в более высококипящих фракциях. [c.13]

    Данные о составе и строении непредельных углеводородов бензинов представляют особый интерес, так как именно эти. углеводо роды определяют некоторые важнейшие эксплуатационные свойства бензинов. [c.15]

    Высокой детонационной стойкостью обладают некоторые внутри-комплексные соли меди. Их эффективность близка к эффективности железоорганических антидетонаторов. Однако эти соединения оказались нестабильными при хранении и в их присутствии наблюдалось ускоренное окисление углеводородов бензина. Кроме того, внутрикомплексные соединения меди отлагаются на стенках впускного трубопровода и вызывают нарушения в процессе смесеобразования, поэтому практического применения они не получили.  [c.128]

    Поэтому бензины, содержащие преимущественно парафиновые углеводороды, будут характеризоваться более высокой весовой теплотой сгорания, чем бензины, содержащие значительное количество ароматических углеводородов (бензины каталитического крекинга [c.51]

    Энергичное окисление углеводородов бензина начинается в камере сгорания в конце такта сжатия рабочей смеси. При движении поршня к в. м. т. непрерывно повышается температура и давление в рабочей смеси и возрастает не только скорость окисления углеводородов, но в процесс окисления вовлекается все большее и большее количество различных соединений. Процессы окисления приобретают особенно большую скорость после воспламенения смеси и образования фронта пламени. По мере сгорания рабочей смеси температура и давление в камере сгорания быстро нарастают, что способствует дальнейшей интенсификации процессов окисления в несгоревшей части рабочей смеси. На последние порции несгоревшего топлива, находящиеся перед фронтом пламени, высокие температура и давление действуют наиболее длительно. Вследствие этого в них особенно интенсивно накапливаются перекисные соединения, поэтому наиболее благоприятные условия для перехода нормального сгорания в детонационное создаются при сгорании именно последних порций рабочей смеси. [c.66]

    Низкокипящие углеводороды бензина частично успевают испариться во впускном трубопроводе, в результате чего смесь, попадающая в цилиндры двигателя, обогащается низкокипящими углеводородами, а пленка жидкости — высококипящими углеводородами. При открытии дроссельной заслонки пленка жидкости по стенкам трубопровода движется со значительно меньшей скоростью, чем воздушный поток, и в течение какого-то времени в цилиндры попадает смесь, обогащенная низкокипящими углеводородами. о явление имеет временный характер, так как в конечном счете пленка попадает в цилиндры двигателя, обеспечивая образование смеси предусмотренного состава. [c.120]


    Кислородсодержащие соединения, в отличие от водорастворимых кислот и щелочей, не являются случайными примесями бензинов, а всегда содержатся в них в том или ином количестве. Они могут попадать в бензин из нефти или ее дистиллятов в процессах нефтепереработки, а также могут образовываться при окислении наиболее нестабильных углеводородов бензина при его хранении и транспортировке. [c.293]

    Возможность возникновения детонации в двигателе решающим образом зависит от способности углеводородов бензина сопротивляться окислению в паровой фазе с образованием пероксидов. Чем труднее окисляются бензиновые углеводороды в паровой фазе, тем медленнее накапливаются пероксиды и тем труднее возникает детонация. Это важное эксплуатационное свойство бензинов получило название детонационной стойкости. [c.10]

    Нефти относятся к типу парафино-нафтеновых с преобладанием парафиновых углеводородов. Бензины низкооктановые. Из нефти могут быть получены летние дизельные топлива с высокими цетановыми числами, осветительный керосин с хорошими фотометрическими свойствами, базовые дистиллятное и остаточное масла, суммарный выход которых 7,6% (на нефть), имеют индекс вязкости в пределах 91 —109. [c.341]

    Углеводороды Бензин терми- Бензин ката-ческого кре- литического кинга крекинга [c.122]

    Идентификация ароматических углеводородов бензина имеет, кроме теоретического, также большой практический интерес. Как известно, антидетонационные свойства бензинов в значительной степснп зависят от присутствия ароматических углеводородов. Отдельные представители ароматических углеводородов, с точки зрения антидетонациоиных свойств бензина, имеют разное значение. Так, например, этилбензол, кроме высокого октанового числа, характеризуется хорошей восприимчивостью к тетраэтилсвинцу поэтому, несмотря на небольшое содержание ароматических углеводородов в большинстве нефтей, их идентификация является актуальным вопросом химии нефти. [c.14]

    ИССЛЕДОВАНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ БЕНЗИНО-ЛИГРОИНОВЫХ ФРАКЦИИ ПАТАРАШИРАКСКОИ НЕФТИ [c.57]

    Дальнейшими исследованиями академика Н. Д. Зелнн-гкоге его школы было показано, что на платинированном угле происходит не только дегидрирование гндроаромати-ческих углеводородов, но н замыкание цикла парафиновых углеводородов [6] с образованием ароматических. Например, этилбензол и ксилолы могут образоваться не только из соответствующих гидроароматических углеводородов, но н из дн-изобутила и н-октана [6]. Это открытие дает основание для критического подхода к изучению химического состава гидроароматических углеводородов бензина путем каталитического дегидрирования на платинированном угле. [c.61]

    Ароматические углеводороды, образовавшиеся в результате дегидрирования гидроароматическнх углеводородов, удалялись таким же способом, как ароматические углеводороды бензина прямой гонки. Для катализата, до и после удаления ароматических углеводородов, были определены те же константы (табл. 1). [c.85]

    Ароматические углеводороды, образовавшиеся в результате дегидрогенизации гидроароматнческих углеводородов, удалялись от катализата также, как ароматические углеводороды бензина прямой гонки. [c.93]

    Вероятность возникновения детонации при работе на данном двигателе суш,ественно зависит и от химического состава применя — емото автобензина наиболее стойки к детонации ароматические и изопарафиновые углеводороды и склонны к детонации нормальные 1[арафиновые углеводороды бензина, которые легко окисляются кислородом воздуха. [c.104]

    Наиболее естественным в ьсинетических исследованиях процессов нефтепереработки является использование так называемых технологических или химических группировок как по исходному сырью, так и по конечным продуктам. Наиболее часто используемый в этих целях прием — это считать за индивидуальное реагирующее вещество отдельные нефтяные фракции, например, бензин, газ, кокс и т.д., или отдельные химические компоненты, например, парафиновые, нафтеновые, ароматические углеводороды бензинов и продуктов каталити — ческого риформинга. Так, в процессах термолиза тяжелых нефтяных остатков Б качестве индивидуальных веществ сырья и продуктов часто принимают масла, смолы, асфальтены, карбены и карбоиды. [c.19]

    Снижение выброса паров углеводородов в атмосферу достигается совершенствованием технологического процесса. Так, на Рязанском НПЗ на установках АВТ внедрен бескомпрессорный метод получения сжиженных газов абсорбцией пропанбутанпеи-та(ювых углеводородов бензином атмосферной колонны, дальнейшим выделением сжиженных газов в колонне стабилизации и откачкой их иа ГФУ. [c.69]

    В бензинах прямой гонки преобладают нормальные или слегка разветвленные (с одной метильной группой в цепи) парафиновые углеводороды. Бензин прямой гонки нз нофш месторождения Винклер (Тексас), богатый изопарафиновыми углеводородами, содержит небольшое количество н-гек-сана и н-гептана и большее количество слегка разветвленных гексанов и гептанов (табл. 2). Процентное содержание высокоразветвленных парафиновых углеводородов (как диметил- и частично триметилпроизводные) во всех прямогонных бензинах невелико. [c.22]

    Кромо более высокого содержания нафтеновых и ароматических углеводородов, бензин каталитического крекинга отличается также высоким содержанием изопарафиновых угловодородов. Характерное для каталитического крекинга соотношение изо-С н-С , приведенное в табл. 1, сохраняется и для высших парафинов. В табл. 3 приводится состав гексановой фракции бензинов каталитического и термического крекингов. [c.143]

    Таким образом более значительно дополненными оказались главы Термические превращения углеводородов , Бензины крэкинга , Нефть как химическое сырье , Синтезы из газов крэкинга и некоторые другие. Нреимущественное внимание при этом уделялось новым вопросам, хотя бы еще не получившим практического осуществления, но обещаюпщм внести в промы1плепность существенные изменения. [c.6]

    Поскольку выделение непредельных углеводородов любым методом относительно дорогостоящий процесс, в последнее время проводятся большие исследования по разработке процессов использования этилена и пропилена без выделения их из газов пиролиза. Один из таких процессов недавно разработан в США и известен под названием процесса Алкар [70]. Он проводится в стационарном реакторе обычной конструкции и основан на каталитическом взаимодействии этилена с ароматическими углеводородами на катализаторе, состав которого не приводится. На данном катализаторе олефины вступают в реакцию с ароматическими углеводородами бензина и количественно превращаются в моноалкилароматические соединения этилен при этом образует этилбензол пропилен дает изопропилбензол и бутилены — бу-тилбензолы. Степень превращения этилена на указанном катализаторе, по сообщению печати, достигает 90%. [c.57]

    Долгое время считалось, что непредельные углеводороды бензинов крекинга имеют, в основном, алифатическое строение и относятся к классу моноолефинов [46]. В работах более позднего периода при использовании селективного каталитического гидрирования [47, 4 ] удалось доказать наличие непредельных углеводородов циклической структуры. Так, при селективном каталитическом гидрировании бензина термического крекинга, содержащего 36 вес. % непредельных углеводородов, было найдено, что 33% непредельных превращается в парафины, 37% — в нафтены и 30% — в алкиларо-матические углеводороды [4]. Следовательно, исходный бензин содержал олефины, циклоолефины и ароматические углеводороды с двойной связью в боковой цепи. [c.15]

    Следует отметить, что количество смолистых веществ, которое определяется как фактические или потенциальные смолы, составляет лишь небольшую часть (от 10 до 35%) кислородных соединений, присутствующих в бензине. В стаканчиках или чашках остаются лишь высокомолекулярные смолистые вещества, образовавшиеся за счет уплотнения первичных подуктов окисления. Все кислородные соединения, молекулярный вес которых незначительно отличается от молекулярного веса углеводородов бензина, испаряются вместе с углеводородной частью бензинов. [c.222]

    Зону олефиновых углеводородов отсчитывают от верхней границы зоны насыщенных углеводородов до середины зоны переходных цветов между желтой зоной олефиновых и голубовато-фиолетовой зоной ароматических углеводородов. Таким образом, в адсорбционной колонке углеводороды бензина распределяются на группы и располагаются в следующем порядке вверху — ароматические (все вместе, включая ароматические олефины и гетероор-ганические соединения), ниже — олефины и в самом низу — насыщенные углеводороды. [c.194]

    Смешивание двух резко различных но уд. весу фракций бензина сопровождается некоторым расширением, а потому уд. вес смеси не может быть точно выражен как среднее арифметическое. В еще большей степени это относится к смесям бензина с ароматическими углеводородами. Бензин уд. веса 0,742 при 15°, кипяпщй 70—85° с 157о бензола, имеет уд. вес не 0,7746, как это вычисляется, ато.лько 0,756]. В случае смесей бензола, в меньшей степени толуола, расши-зение при смешивании не является простой функцией концентрации.. Незначительная прибавка бензина к бензолу сопровождается абсолютно гораздо большим расширением, чем такая же прибавка бензола к бензину. Точные исследования Кольмана и Йемена (96) имели целью прияожеш1е этого явления к анализу бензинов. [c.120]

    Если теперь точно отметить эту температуру и другую порцию обработать серной кислотой для удаления ароматических углеводородов, и снова определять критическую температуру растворения анилина в тех же условиях, что и раньше, то в силу отсутствия углеводородов, легко растворяющих анилин, температура полного растворения окажется выше. Для большинства метановых углеводородов бензина она лежит около 70°. Разность температур растворения аяи-лина до и после удаления ароматических углеводородов по(чтв пропорциональна содержанию ароматических углеводородов. 1Ср яче-ская температура растворения анилина называется сокращешо анилиновой точкой . На величину критической температуры вл ряд факторов, которые все должны быть учтены. [c.151]

    I .епредельные углеводороды бензинов крекинга и пиролиза представлены олефинами, циклоолефинами, ароматическими угле- [c.118]

    АДСОРБЦИОННОЕ РАЗДЕЛУ5Ш1Е УГЛЕВОДОРОДОВ БЕНЗИНА (С ПРИМЕНЕНИЕМ СМЕЩАЮЩЕЙ ЖИДКОСТИ) [c.164]


Смотреть страницы где упоминается термин Углеводороды бензинов: [c.208]    [c.50]    [c.337]    [c.338]    [c.242]    [c.290]    [c.117]    [c.160]    [c.168]    [c.194]    [c.74]    [c.211]   
Смотреть главы в:

Автомобильные бензины. Свойства и применение -> Углеводороды бензинов

Автомобильные бензины свойства и применение -> Углеводороды бензинов




ПОИСК







© 2025 chem21.info Реклама на сайте