Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платинирование

    Как видно из приведенных данных, перенапряжение водорода может достигать на некоторых электродах (особенно на электродах из ртути, свинца и олова) весьма большой величины. На ртутном электроде потенциал пары 2Н /Н2 на 1,04 в более отрицателен, чем на электроде из платинированной платины. Величина перенапряжения водорода имеет очень большое значение для электроанализа благодаря перенапряжению водорода на катоде можно выделять такие металлы, которые, судя по их окислительным потенциалам, выделяться не должны. [c.430]


    Для полного дегидрирования гексагидроароматических углеводородов достаточно однократное их проведение на высокоактивном платинированном угле, в то время как дегидроциклизацией н-октана на таком же катализаторе при трехкратном пропускании этого углеводорода образуется лишь 12% ароматических углеводородов, как это показано Б. А. Казанским и А. Ф. Платэ [4],. [c.175]

    Объектом глубокого изучения в целом ряде исследований явился катализатор Pt/ . Так, была изучена [60, 61] связь между структурными особенностями платинированных углей, содержащих разное количество металла, распределением в них платины и их активностью в реакциях гидрирования бензола и дегидрирования циклогексана. Оказалось, что при размере зерен угля 4— 10 мм происходит падение концентрации Pt от поверхности в глубь зерна при этом градиент концентрации металла по глубине зерна уменьшается с уменьшением концентрации Pt в исходном растворе. Кроме того, авто- [c.198]

    В результате дегидрогенизационного катализа на платинированном угле объемный процент ароматических углеводородов во фракции 60—95° увеличен на 15, во фракции 95— 122° — на 19, а во фракции 122—150° — на 44. [c.189]

    Pt/ активность катализаторов в реакции Св-дегидро-циклизации падает, и при содержании Pt несколько ниже 10% катализаторы становятся практически неактивными. Далее было обнаружено [25], что малые добавки КОН к готовому Pt/ активируют, а большие— дезактивируют катализатор. При сравнении влияния шелочи (КОН) на активность платинированных углей, приго- [c.199]

    Дегидрирование деароматизированной фракции мирзаанского бензина проводилось над платинированным углем (платина 4,8%). Катализатор был приготовлен по методу [c.226]

    Такая концепция несмотря на некоторую сложность позволяет с единой точки зрения рассматривать все экспериментальные результаты, получаемые на платинированном угле с высоким содержанием Pt (10—40%) при 250—350 °С. Пока все имеющиеся факты, по крайней мере для Pt/ , хорощо с ней согласуются. [c.128]

    Если на той же грани Pt (111) вместо циклопентана поместить молекулу циклогексана, то каждый атом углерода попадает в одно из междоузлий и растяжения С— С-связей не произойдет, т. е. не будет содействия гидрогенолизу. Было показано [155], что гидрогенолиз циклогексана на платинированном угле действительно не происходит чувствительность использованного метода анализа была очень высока гидрогенолиз был бы замечен, даже если бы он проходил лишь на 0,005%. Аналогичное рассуждение показывает, почему не происходит на Pt/ и гидрогенолиз алканов. [c.128]

    Б. А. Казанский и Т. Ф. Буланова [22] исследовали поведение смеси циклогексана и циклопентана в условиях дегидрогенизационного катализа над платинированным углем прн 300 -310°. Оказалось, что в начале реакции имеет место гидрогенолиз циклопентана (за счет водорода, отщепляющегося от циклогексана), но катализатор быстро теряет активность по отношению к гидрогенолизу циклопентана, сохраняя прежнюю активность по отношению к дегидрогенизации циклогексана. Таким образом платиновый катализатор, находящийся в соприкосновении с углеводородной смесью, содержащей циклопентан, настолько теряет активность по отношению к гидрогенолизу циклопентановых углеводородов, что даже циклопентан, размыкающийся легче всех остальных пятичленных цикланов, остается в дальнейшем нетронутым. Так как платиновый катализатор, применяемый нами для исследования химического состава норийской нефти, находился в работе длительное время, то нужно полагать, что в условиях наших опытов гидрогенолиз циклопентановых и дегидроциклизация парафиновых углеводородов были сведены к минимуму. [c.165]


    Дополнительное подтверждение рассмотренной выше концепции получено в работе [64]. В опытах по Сз-дегидроциклизации н-гептана, проведенных в проточной системе без газа-носителя и в интенсивном токе водорода (10 л/ч), селективность циклизации по направлениям 1 и 2 заметно различалась. Действительно, отношение диметилциклопентанов к этилциклопентану с указанным изменением условий проведения эксперимента выросло с 0,35—0,5 до 0,6—0,95 в импульсном режиме при той же температуре (300 °С) это отношение составляло 1,25—1,3. Таким образом очевидно, что степень насыщения поверхности платинированного угля водородом в существенной мере влияет на селективность протекания реакцин Сз-дегидроциклизации н-гептана в присутствии этого катализатора. [c.218]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Опыт показывает, что это изменение условий перехода в элементарный водород или воды в элементарный кислород и приводит к изменению потенциалов соответствующих пар. Например, в то время как стандартный потенциал пары 2Н+/Нг на платинированной платине равен (по водородной шкале) нулю, при той же концентрации Н- -ионов и давлении газообразного водорода I а гладком платиновом электроде он равен —0,07 в. Точно так же I отенциал этой пары изменяется и при употреблении электродов 1 3 других металлов, например из меди, свинца, ртути и т. д. [c.430]

    Дальнейшими исследованиями академика Н. Д. Зелнн-гкоге его школы было показано, что на платинированном угле происходит не только дегидрирование гндроаромати-ческих углеводородов, но н замыкание цикла парафиновых углеводородов [6] с образованием ароматических. Например, этилбензол и ксилолы могут образоваться не только из соответствующих гидроароматических углеводородов, но н из дн-изобутила и н-октана [6]. Это открытие дает основание для критического подхода к изучению химического состава гидроароматических углеводородов бензина путем каталитического дегидрирования на платинированном угле. [c.61]

    Экспериментальная часть. Мирзаанский бензин был выделен нами путем фракционирования мирзаанской нефти. Ароматические углеводороды удалялись 99% серной кислотой. Из деароматизированного бензина отбиралась фракция 95—122° и подвергалась дегидрогенизации ыа платинированном угле при 300—305° со скоростью 6 мл/час. Платинированный уголь был приготовлен по указанию Пак-кендорфа и оТедер-Паккендорф [9], Катализатор в количестве 33 г помещался в стеклянную трубку диаметром в 2 см длина слоя катализатора 60 см. Трубка нагревалась в электропечи типа Гереуса, температура которой измерялась термопарой и регулировалась терморегулятором. Активность [c.62]

    Для установления природы пафте110вых урлеводородов деароматизированный бензин подвергался дегидрогенизации на платинированном угле (Р1 10%), содержащем железо, с целью подавления реакции гидрогенолиза циклопентановых углеводородов, как это было показано Б. А. Казанским и Г. С. Ландсбергом [5]. Дегидрирующая способность катализатора проверялась по Г. С. Павлову. Катализатор переводил 95% циклогексана в бензол. [c.85]

    Взятый нами для исследования бензин был получен из нефти (скв, 12) супсинского месторождения (Грузия). Из этого бензина была выделена фракция, выкипающая в пределах 122—150°. Полученная фракция была промыта 75%-ной серпой кислотой, затем 107о-ным раствором соды и дистиллированной водой. После высушивания над хлористым кальцием и перегонки в присутствии металлического натрия в ней были определены показатель лучепреломления, удельный вес и максимальная анилиновая точка. После удаления ароматических углеводородов было проведено каталитическое дегидрирование фракции на платинированном угле (22% платины), приготовленном по Н. Д. Зелинскому и М. Б Туровой-Поляк [16]. Активность катализатора была проверена проведением над ним циклогексана с объемной скоростью [c.87]

    Исследованиями Б. А. Казанского и А. Ф. Платэ [4Д было показано, что на платинированном угле происходит не только дегидрирование гексагидроароматическнх углеводородов, но и замыкание парафиновых углеводородов в циклы с образованием ароматических, Это дало повод для критического подхода к изучению химического состава бензина с помощью дегидрогеиизационного катализа. [c.131]


    Н. Д. Зелинским, Б. А. Казанским и А, Ф. Платэ [27], реакции дегндроциклизации парафиновых углеводородов Б. А. Казанским и А. Ф, Платэ Г28] и дальнейшее плодотворное развитие этих реакций в исследованиях Б. А. Казанского и его учеников [29, 30] дали повод для критического подхода к изучению химического состава бензинов методом дегид-рогенизационного катализа. Так, например, этилбепзол и ксилолы могут образоваться не только из соответствующих гидроароматических углеводородов, но и из 2,5-диметилгек-сана и н-октана контактированием этих углеводородов с платинированным углем при 305—ЗЮ" . При этом лучшие результаты получаются, если процесс вести в атмосфере азота или углекислого газа. [c.147]

    П. С. Панютин и Е. П. Фирсанова [32] при исследовании химического состава сураханского бензина заметили, что при пропускании смеси циклопентановых и парафиновых углеводородов над платинированным углем при 300—310° не происходит заметного изменения в смеси. Это служит доказательством того, что а условиях дегидрогеиизационного катализа сведены к минимуму гидрогенолиз циклопентановых углеводородов II дегидроциклизация парафиновых углеводородов, [c.148]

    На примере смеси циклопентановых и парафиновых углеводородов с т. кип. 140—195° нами показано, что в условиях дегидрогенизацпонного катализа на платинированном угле не происходят ни гидрогенолиз циклопентановых углеводородов, пи дегидроциклизация парафиновых углеводородов. [c.149]

    В результате проведенного исследования показано, что диизобутил, н-октан и 2-метилгексап не претерпевают никакого изменения при пропускании их над палладированным углем при 300—305 в слабом токе водорода. Расщепление этилциклопентана на палладированном угле идет значительно меньше, чем на платинированном угле, и поэтому высказано предположение, что для исследования химического состава бензина путем дегидрогенизации гексагидроароматических углеводородов преимуществом обладает палладий, так как он в меньшей стеиеш вызывает побочные реакции. [c.150]

    Следующей стадией исследования являлась дегидрогенизация гидроароматических углеводородов, входящих в состав деароматизированных фракций над платинированным углем. Катализатор был нритотовлеп по методике Н. Д. Зелинского и М. Б. Туровой-Поляк [26], он содержал 7,8% платины и находился ранее в употреблении. [c.167]

    С этой целью Ю. К. Юрьев и П. И. Журавлев [3] приготовили искусственпую смесь парафиновых и нафтеновых углеводородов и подвергли дегидрогенизации на платинированном угле в условиях дегидрогеиизационного катализа. Количество ароматических углеводородов, образовавшихся в результате дегидрогенизации гексагидроароматических углеводородов, соответствовало количеству гексагидроароматических углеводородов, находящихся в искусствепной смеси. [c.174]

    П. С. Панютин и Е. Н. Фирсанова [5] заметили, что при пропускании смеси циклопентановых и парафиновых углеводородов на платинированном угле, в условиях дегидрогенн-зационного катализа, не имеет место заметное изменение углеводородов, входящих в состав смеси. [c.175]

    Ароматизацией катализом новобогатинского (эмбенского) бензина Зелинский и Шуйкин [5] обнаружили, что в присутствии платинированного угля объемный процент ароматических углеводородов можно увеличить для отдельных фракций от 6 до 19%, а применением никелевого катализатора прирост ароматики можно повысить еще больше. [c.185]

    Для этого был приготовлен платинированный уголь 20% платины (согласно указаниям Паккендорфа и Ледер-Пак- [c.187]

    Дегидрирование деароматизированного бензина производилось в электропечи над платинированным углем, содержащем 22% палладия, длина слоя катализатора — 72 см, вес катализатора — 28,1 г, диаметр стеклянной трубки, в которой находился катализатор — 2,1 см. Температура печи регулировалась терморегулятором и измерялась термопарой. Активность катализатора проверялась дегидрогенизацией ииклогексана при. 305—310° по Г. С. Павлову [17]. Дегидрирование деароматизированной фракцин 60—150° норийского бензина проводилось ири той же температуре (305—310") со-скоростью 5 мл в час. [c.218]

    Затем изомеризат-бензнн подвергался дегпдрогениза-ционному катализу над платинированным углем. Катализатор готовилсн пи Н. Д. Зелинскому и М, Б. Туровой-Поляк [20]. [c.220]

    Затем изо.мернзат-бензин подвергался дегпдрогениза-ционному катализу над платинированным углем (Р1 — 7,8%) при 310—315°С и объемной скорости пропускания смеси 0,026 мл/ч. [c.223]

    После этого изомеризат-бензин подвергался дегидроге-низациоиному катализу на платинированном угле, содержащем 7,8% платины при 310—315° и объемной скорости пропускания смеси 0,024 мл/час (длина слоя катализатора — 72 см, количество катализатора — 42 г, объем катализатора — 170 мл). Затем катализат сушился над хлористым кальцием, перегонялся в присутствии металлического иатрия и для него определялись те же константы, что и до катализа (значения их собраны в табл. 5). [c.224]

    Практика показывает, что энергия активации реакции окисления сернистого газа в серный ангидрид на промышленны.х катализатора.х, как правило, равно приме[1но 17000 кал1моль. а постоянный множитель (и урапне1гии Аррениуса) скорости этой реакции иа платинированном асбесте, содержащем 0,2% платины, равен 6,1 10. Подсчитать константу скорости этой реакции на платинированном асбесте при температурах а) 400° С, б) 525° С и [c.245]

    После первой публикации о конфигурационной изомеризации стереоизомерных триметилциклопентанов лишь в начале бО-х годов после работы Го, Руни и Кемболла [4] и первых наших публикаций [5, 6] конфигурационная изомеризация гомологов циклопентана стала предметом широкого обсуждения. Мы показали [5], что в присутствии платинированного угля в широком интервале температур (150—280 °С) стереоизомерные 1,2-ди-метилциклопентаны легко переходят друг в друга. При этом конфигурационная изомеризация проходит с гораздо большей скоростью, чем сопутствующая ей реакция гидрогенолиза пятичленного цикла. Далее нами было показано [6], что активными катализаторами, способствующими протеканию конфигурационной изомеризации, наряду с платиной являются родий, осмий, иридий и палладий, а также рутений [1] и кобальт [7]. [c.65]

    ЛИЗ— Проходит с разрывом кольца по направлению 1 [74, 75]. В наиболее чистом виде эта реакция осуществляется на платинированном угле. На других катализаторах, например платинированном кизельгуре или палла-дированном угле, всегда получаются в большем или меньшем количестве алканы, которые на первый взгляд образуются по направлению 2 [76, 77]. Однако оказалось, что эта схема не осуществляется в таком простом виде и что циклопропаны в присутствии некоторых контактов изомеризуются в алкены с открытой цепью [78— 81]. Катализаторами для этой реакции служат силикагель ( 50°С), аморфные и кристаллические алюмосиликаты (50—200°С), кизельгур (120°С), пемза (170— 200 °С), активированный уголь ( 200°С). При этом в отличие от гидрогенолиза всегда раз.рываются связи цикла, прилегающие к наименее гидрогенизованному углеродному атому цикла  [c.101]

    Во всех цитированных выше работах по гидрогенолизу циклопентанов в качестве катализатора гидрогенолиза применялся платинированный уголь. Значительно сложнее протекает реакция на алюмоплатиновых катализаторах. Подобные катализаторы (содержание Pt от 0,15 до 20%) широко обследовал Го [162] при изучении гидрогенолиза метил-, 1,3-диметил- и полиметилциклопентанов. Оказалось, что относительные скорости гидрогенолиза по различным связям цикла в значительной степени зависят от ряда факторов строения исходного углеводорода, начального давления водорода, температуры, содержания Pt в катализаторе и др. Так, в случае метилциклопентана с ростом начального давления водо  [c.129]

    Полученные данные по гидрогенолизу циклоалканов хорошо согласуются с представлениями о протекании этой реакции по дублетной схеме на Rh, Ru и ряде других металлов, отложенных на угле, и по секстетно-дублетной схеме — на платинированном угле, а также с изложенными выше представлениями относительно важной роли, которую играет различное заполнение поверхности катализатора реагентами, что отчетливо проявляется в условиях проточного и импульсного методов исследования. [c.173]

    Несмотря на то, что дибензил, будучи добавлен к стильбену и толуолу, термически крекируется до антрацена, сам стильбен в аналогичных условиях не дает ни антрацена, ни фенантрена. Тем не менее, Зелинский и сотрудники [48] нашли, что стильбен, как дибензил, и даже дицикло-гексилэтан, дает количественный выход фенантрена при прохождении над платинированным древесным углем при 300° С. [c.108]

    В случае достаточно высокой температуры крекинга могут также иметь место вторичные реакции. Дегидрирующие катализаторы, в частности, платинированные или палладированные уголь или асбест, никель и хромовые катализаторы способствуют ароматизации нафтеновых колец. Если кольцо по величине недостаточно для образования ароматического кольца, тогда дегидрогенизация идет с большим трудом и обычно сопровон дается крекингом кольца. [c.111]

    Непредельные тример и тетрамер изобутилена, полученные при обработ11е бутилена разбавленной серной кислотой, после гидрирования в присутствии платинированного угля при 200° дали предельные полимеры, идентичные с продуктом, образовавшимся при полимеризации изо-бутилена в присутствии концентрированной серной кислоты. Свойства этих гидрированных полимеров приведены в табл. 1. [c.192]

    Гидрогенолиз /и/)аис-1,2-диметилциклоиентана при 300° над платинированным углом дает 2,3-диметилпентан, что означает, что всо три соседние с замещенными С-атомами связи пассивны [801  [c.258]


Смотреть страницы где упоминается термин Платинирование: [c.430]    [c.431]    [c.415]    [c.114]    [c.149]    [c.164]    [c.102]    [c.106]    [c.246]    [c.489]    [c.99]   
Смотреть главы в:

Электроосаждение металлических покрытий -> Платинирование

Защита металлов от коррозии -> Платинирование

Прикладная электрохимия Издание 3 -> Платинирование

Защита металлов от коррозии -> Платинирование

Технология электрохимических покрытий -> Платинирование

Технология электрохимических покрытий Издание 2 -> Платинирование

Справочник гальваностега -> Платинирование

Рецептурный справочник для электротехника Издание 2 -> Платинирование

Рецептурный справочник для электротехника Издание 2 -> Платинирование

Металлические покрытия химическим способом -> Платинирование


Практикум по физической химии изд3 (1964) -- [ c.252 ]

Краткий курс физической химии Изд5 (1978) -- [ c.426 ]

Прикладная электрохимия Издание 3 (1974) -- [ c.204 ]

Курс химического качественного анализа (1960) -- [ c.173 ]

Курс физической химии Издание 3 (1975) -- [ c.577 ]

Курс химического и качественного анализа (1960) -- [ c.173 ]

Техника физико-химического исследования Издание 3 (1954) -- [ c.304 ]

Коррозия пассивность и защита металлов (1941) -- [ c.686 ]

Практикум по физической химии Изд 3 (1964) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Вайсбеля платинирование

Водородный электрод платинирование

Водородный электрод раствор для платинирования

Контактное платинирование

Платинирование Плексиглас

Платинирование гальваническое

Платинирование сопряженное

Платинирование стекла и фарфора

Платинирование электродов

Серебрение. Золочение. Платинирование. Покрытие другими металлами и сплавами

Твердые носители платинирование

Химическое палладирование и платинирование

Электричества количество платинирование

Электролиты для платинирования и режимы работы



© 2025 chem21.info Реклама на сайте