Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислотность Михаэлису

    На стадии ацилирования происходит нуклеофильная атака карбонильного углерода субстрата обобщенным нуклеофилом активного центра 8ег-195... Н1з-57... Азр-102. В результате ацилирования активного центра происходит поворот остатка 8ег-195 вокруг С —Ср-связей, что сопровождается перемещением атома кислорода на- 2,5А. При этом имидазольная группа Н1з-57 перемещается в сторону растворителя [18]. В результате имидазольная группа Н13-57, будучи включенной в свободном ферменте (и, по-видимому, в комплексе Михаэлиса) в водородную связь с 8ег-195 (рис. 31), в ацилферменте предоставляет свой М атом для образования водородной связи с водой (рис. 32). В итоге активированная молекула воды приобретает способность эффективно атаковать карбонильный- углерод субстрата на стадии деацилирования. При этом образуется кислотный продукт гидролиза и регенерируется свободный фермент. Таков в общих чертах химический механизм гидролитического действия химотрипсина. [c.131]


    Подобного рода ступенчатые равновесия имеют место 1) в случае кислотно-основных равновесий (многоосновные кислоты) 2) в окислительно-восстановительных системах [например, при обратимом двухступенчатом окислении, открытом Михаэлисом [1] и Элемом [2], пиоцианина (феназинового производного) и красителя Вурстера] и 3) при комплексообразовании. [c.19]

    НО отмечалось, что максимальная скорость многих ферментативных реакций, наблюдающаяся при насыщающей концентрации субстрата, а не только кажущаяся величина Кт, зависит от pH. Это заставило предположить, что концентрация ионов водорода определяет не только ионизацию свободного фермента, но также кислотно-основную диссоциацию фермент-субстратного комплекса, причем этот последний процесс влияет на концентрацию активного комплекса Михаэлиса и образование продуктов реакции. [c.109]

    Из анализа этих данных следует, что в каталитическом акте принимает участие группировка с рКь 6,48, которая при образовании комплекса Михаэлиса теряет способность к ионизации, но освобождается после отщепления холина. Аналогично ведет себя вторая группировка активного центра, имеющая в исходном ферменте рКа 9,35. Величине рК основной группы наиболее близка к значению рК имидазольной группы гистидина. Кислотная группа с рК 9,35 может представлять ОН-группу тирозина, либо 5Н-группу цистеина. Таким образом, из данных Лейдлера и Крупки следует, что рк тех же группировок в ацетилированном ферменте отличается от значений рК в исходном ферменте. [c.183]

    Исследования Михаэлиса показали, что середина интервала превращения пиоцианина как кислотно-основного индикатора лежит при pH = 4,9. При восстановлении его в щелочном растворе синий цвет обесцвечивается в кислом же растворе восстановление происходит в две ступени сначала красная окраска переходит в зеленую, а затем обесцвечивается. Михаэлис считает, [c.152]

    Каталитическая деполимеризация паральдегида на сульфатах никеля и меди протекает как типичная ферментативная реакция. На рис. 61 приведена зависимость величины обратной скорости деполимеризации (начальной скорости, отнесенной к 1 ммоль кислотных центров с Яд< - 3,0) от величины обратной исходной концентрации [5] паральдегида [31]. Из рисунка следует, что опытные точки ложатся на две прямые, т.е. кинетика процесса описывается хорошо известным уравнением Михаэлиса - Ментена [c.126]

    Теория окислительно-восстановительного титрования, как и теория кислотно-основного титрования, развилась на базе изучения соответствующих индикаторов. Эти исследования были выполнены теми н е учеными, которые первыми начали изучать кислотно-основное титрование, а именно Кларком и Михаэлисом. В разработке теории окислительно-восстановительного титрования принимал [c.236]


    Формальное сходство между отдельными сторонами поведения протонов и электронов было давно обнаружено Кларком [12], Шварценбахом [85], Михаэлисом [73]. Шварценбах предложил кислотно-основное равновесие выражать через нормальный кислотный потенциал Е , определяемый уравнением [c.64]

    Метод безбуферного определения pH (по Михаэлису), В этом методе используют чаще одноцветные индикаторы, нитро- и дини-грофенолы, у которых кислотная форма бесцветна, а щелочная окрашена. В этом методе в отличие от буферного шкала готовится на растворах щелочи, в которых весь прибавленный в пробирку и1Дикатор полностью диссоциирован п интенсивность окраски можно считать пропорциональной количеству прибавленного индикатора. [c.58]

    Трудности в определении активности протона привели к тому, что было предложено много других методов оценки кислотности в неводных растворах. Первой была попытка Михаэлиса и Митцутани, которые предложили оценивать кислотность в неводных растворах, измеряя э. д. с. цепи, включающей диффузионный и фазовый потенциал [c.411]

    Наряду с изоэлектрической то ч к о й, определяемой по электрокинетическим эффектам, часто рассматривают изоионную точку, т. е. то значение pH, при котором число ионизированных кислотных и основных групп макромолекулы (или частицы амфотерного гидроксида) од,И1наковО. На ее положенме в ооновиом вл ияют самые сильные кислотные и основные группы с константами диссоциации /Скисл и Кося соответственно. Тогда для одно-одновалентного электролита приближенно справедливо уравнение Михаэлиса  [c.210]

    Превращение субстрата в продукт происходит в комплексе Михаэлиса. Часто субстрат образует ковалентные связи с функц. фуппами активного центра, в т. ч. и с группами кофермента (см. Коферменты). Большое значение в механизмах ферментативных р-ций имеет основной и кислотный катализ, реализуемый благодмя наличию имидазольных Фупп остатков гиствдина и карбоксильных фупп дикарбоновых аминокислот. [c.80]

    Как правило, для определения pH достаточно от одной до трех капель 0,1—0,5% раствора индикатора на 10 мл исследуемого раствора или вспомогательного буферного раствора. Если индикатор слабо растворим в воде, то удобно применять его водорастворимую соль можно также растворить кислотную форму индикатора в разбавленном щелочном растворе или 50%-ном этаноле. Следует г- чательно избегать избытка щелочи. Кольтгоф рекомендует следующие составы растворов одноцветных индикаторов Михаэлиса (сь табл. VI. 2) пикриновая кислота и динитрофенолы— 0,04% водиле растворы солей натрия мононитрофенолы— 0,1% водный рас-хвор фенолфталеин — 0,04% раствор в 30%-ном этаноле салицю.ювый желтый — 0,1% спиртовый раствор для pH 10—11 и 0 025% раствор для pH 11—12. [c.132]

    Михаэлис и Граник определили значение pH в 11 М растворе H2SO4. Найдено, что pH подобно Но является линейной функцией молярности при концентрации кислоты более 1 М (см. кривые 3 и 4 на рис. Vni. 2). Величина pH хорошо согласуется с Яо в 1 М растворе и приаимает несколько меньшие значения при больших концентрациях кислотности. Различие между ними в ЮМ растворе составляет около 0,5 ед. pH. [c.191]

    После приближенного производят точное определение pH посредством сравнения цвета исследуемого раствора с цветами заранее приготовленных растворов. Для этого применяют а) буферные растворы с известным значением pH, б) растворы с определенным соотношением кислотной и щелочной форм индикатора (по Гиллеспи) или в) растворы с переменным содержанием индикатора в одной форме (по Михаэлису). В первом случае способ определения pH называется буферным, в остальных—безбуфер-ным. [c.227]

    По Михаэлису. Одноцветные индикаторы в кислотной форме бесцветны, а в щелочной имеют окраску, характерную для аниона. [c.229]

    Связывание субстрата и синхронный сдвиг электронов при общем кислотно-основном катализе, приводящем к превращению комплекса Михаэлиса в ацилированную форму фермента, и последующая стадия деацилироваиия могут быть представлены следующей схемой (см. стр. 433). [c.434]

    Приводим ниже (табл. 32) значения нормальных окислительных потенциалов этих индикаторов при 25°, взятые у Михаэлиса и Игля, а также кислотны покааатели окисленной и восстановленной форм. [c.148]

    Хотя буферные растворы вскоре стали широко использоваться, новая единица измерения кислотности интересовала только небольшую группу ученых, и в том числе лишь считанных химиков. Практическую важность этой характеристики первыми оценили биохимики. Большинство работ, посвягценных этому вопросу, было выполнено в Карлсбергской лаборатории в Дании, а в 1914 г. была опубликована первая монография, озаглавленная О концентрации. водородных ионов ( Die Wasserstoffionkon-zentration ). Ее автор, Л. Михаэлис, утверждал, что хи-мик-физиолог должен четко представлять себе, что такое pH. В качестве примера, наглядно показывающего, к каким ошибкам может привести пренебрежение этой величиной, он демонстрирует работу некоего автора, изучавшего эффективность инвертазы. Установив, что эффективность ослабляется при введении сыворотки крови, данный автор сделал вывод, что сыворотка содержит какие-то антагонисты инвертазе. На самом же деле снижение активности обусловлено изменением pH при введении сыворотки крови, и аналогичный эффект будет наблюдаться при введении любого раствора с тем же, что и у сыворотки, значением pH. [c.232]


    Начата работа (главным образом Бранчем и Шварцен-бахом) по установлению зависимости между кислотностью и основностью веществ и их электронной резонансной структурой. Повидимому, возможно развить теорию строения молекул настолько, чтобы делать надежные предсказания i) поведении веществ как в отношении физических, так и химических свойств. С резонансом тесно связана окраска органических красителей . Насколько тесна эта связь, видно из последних экспериментальных работ, главным образом Шварценбаха и Михаэлиса. Хотя до сих пор и не создано настоящей теории цветности, но можно надеяться, что такая теория, исходя из идеи резонанса, будет разработана в ближайшие десять лет. К числу наиболее интересных научных проблем принадлежат вопросы о строении и свойствах веществ, имеющих биологическое значение. Я не сомневаюсь в том, что в этой области очень существенны явления резонанса и водородной связи. Эти две особенности строения [c.415]

    Изолированное наблюдение различия скорости ферментативно катализируемой реакции в воде и в окиси дейтерия не дает ничего существенного для понимания механизма реакции. Элементарные требования, необходимые для интерпретации изотопных эффектов в ферментативных реакциях, заключаются в следующем 1) необходимо разделение влияний изотопного замещения на максимальную скорость и на Кж с дальнейшим разделением влияний на элементарные константы скоростей и равновесий реакции 2) пеобходидю разграничение изотопных эффектов для водородных атомов, необмениваю-щихся и быстро обменивающихся с растворителем 3) для экспериментов, проводимых в растворах окиси дейтерия, необходимо определение влияния этого растворителя на зависимость максимальной скорости и константы Михаэлиса от кислотности. Изотопные эффекты в реакциях переноса необлш-нивающихся атомов водорода, которые обычно связаны с углеродом, интерпретировать относительно легко, поскольку их можно изучать в растворителе постоянного состава, в то время как протоны, связанные с кислородом, азотом или серой, всегда обмениваются с растворителем с диффузионно контролируемой скоростью, которая много выше, чем у изучаемой реакции дейтериевый изотопный эффект в таких реакциях необходимо изучать при использовании окиси дейтерия в качестве растворителя, что влечет за собой определенные трудности в интерпретации результатов, связанных с влиянием растворителя. [c.217]

    В безбуферном методе можно использовать как двуцветные, так и одноцветные индикаторы. В методе Михаэлиса, получившем широкое применение в физиологической и клинической практике, используют одноцветные индикаторы, нитро-и динитрофенолы, у которых кислотная фор- [c.185]


Смотреть страницы где упоминается термин Кислотность Михаэлису: [c.151]    [c.412]    [c.78]    [c.231]    [c.783]    [c.478]    [c.219]    [c.47]   
Электрохимия растворов (1959) -- [ c.783 ]




ПОИСК





Смотрите так же термины и статьи:

Михаэлис



© 2025 chem21.info Реклама на сайте