Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление металлами в растворах

    Отфильтровав оставшийся после восстановления металл, раствор подкисляют азотной кислотой , прибавляют нитрат серебра и получают характерный творожистый осадок хлористого се ребра. [c.461]

    Металл сожжен в кислороде с образованием 2,32 г оксида, для восстановления которого до металла необходимо затратить 0,896 л (н. у.) оксида углерода (II). Восстановленный металл растворили в разбавленной серной кислоте, полученный раствор давал темно-синий осадок с красной кровяной солью Kg[Fe( N)g]. Определите формулу оксида. Напишите уравнения всех протекающих реакций. [c.248]


    ИЗ раствора способна разряжаться и выделяться на металле (процесс восстановления). Как только скорости этих двух противоположно направленных электрохимических реакций становятся равными, устанавливается динамическое равновесие, при котором в единицу времени столько ионов покидает металл, сколько разряжается на нем. В зависимости от того, какой процесс преобладает, на металле возникает избыток положительных или отрицательных зарядов, а раствор вблизи поверхности металла получает противоположный заряд. Следствием этого является возникновение разности потенциалов на поверхности раздела металл — раствор. [c.345]

    Влияние существующего в растворе электрического поля на определяемые катионы исключают, добавляя к раствору концентрированный раствор какого-либо электролита, содержащего катион с высоким потенциалом восстановления (обычно раствор соли щелочного или щелочноземельного металла). При этом перенос тока будет происходить практически только за счет движения ионов этого электролита. Определяемые же ионы, поскольку концентрация их гораздо меньше, будут играть Б этом переносе такую ничтожно малую роль, что без заметной ошибки можно считать их появление у катода обусловленным исключительно процессом диффузии из более отдаленных частей раствора. Только пр этом условии можно считать, что высота полярографической, волны пропорциональна концентрации восстанавливающихся на катоде (определяемых) ионов. Такие растворы электролитов, с помощью которых устраняется влияние электрического поля, называются основными растворами или фоном. [c.455]

    Процессы восстановления металлов из растворов их солен электронами катода относятся уже к области электрометаллургии. [c.237]

    Процессы восстановления металлов из руд различаются по природе восстановителя и по условиям восстановления. В качестве восстановителей применяют химические вещества (водород, оксид углерода (П), углерод, металлы) или электрический ток, а процесс восстановления можно проводить в растворе, в расплаве или в твердой фазе. В зависимости от этого различают следующие методы восстановления  [c.10]

    Восстановленный фосфор растворяется в железе и полностью переходит в чугун. Поэтому получить металл с низким содержанием фосфора можно только на основе низкофосфористой шихты. [c.66]

    Восстановление металлами и водородом. При восстановлении сульфохлоридов металлами в щелочном или нейтральном растворе образуются соли сульфиновых кислот. Эта реакция легко идет с кальцием в водном растворе щелочи [64] и с цинковой пылью в воде [65, 66] или в спирте [65, 66в, 67]  [c.326]


    Еще одним методом получения покрытий является химическое восстановление металлов из растворов их солей. При этом образуется покрытие, прочно сцепленное с основным металлом. Процесс получения никелевых покрытий такого рода называется химическим никелированием. [c.231]

    Большое распространение получили методы нанесения электропроводящего слоя на различные неметаллические изделия посредством химического восстановления металлов из растворов их солей. Наиболее часто применяется химическое серебрение, меднение или никелирование с предварительными операциями сенсибилизации и активирования покрываемой поверхности (стр. 443 сл.). [c.431]

    Кислотность растворов электролитов влияет на многие электрохимические процессы. В частности, от нее зависят свойства осадков, получаемых при катодном восстановлении металлов. С кислотностью же связаны стадии и скорости электрохимических реакций. [c.306]

    Металлы, обладающие более отрицательным стандартным электродным потенциалом, могут быть использованы для вытеснения (восстановления) металлов с более положительным стандартным электродным потенциалом из водных растворов их солей. Отсюда следует, что все металлы, стандартный электродный потенциал которых отрицателен, могут вытеснять водород из водных растворов кислот, а в некоторых случаях — и из воды. Металлы, стандартный электродный потенциал которых положителен, не вытесняют водород из водных растворов кислот. В некоторых случаях такие металлы обладают особой химической инертностью н противостоят даже воздействию сильных окислителей. [c.237]

    При укладывании металла в редуктор не следует слишком сильно уплотнять частицы, однако необходимо обращать внимание, чтобы между стружками или зернами не получалось больших зазоров по таким зазорам часть раствора может пройти через редуктор, не успев восстановиться. Металл сохраняют в редукторе под слоем воды. Очень важно, чтобы во время восстановления металл не соприкасался с воздухом. Поэтому не нужно полностью сливать жидкость из редуктора, а постепенно добавлять раствор или промывную жидкость немного выше уровня слоя металла. Слой металла в редукторе должен быть не менее 6—8 см. [c.396]

    Химические — восстановление металлов из водных растворов их соединений (меднение, никелирование, серебрение).  [c.64]

    Влияние температуры на процессы автокаталитического восстановления металлов имеет такой же характер, что и для большинства химических реакций, т. е. выражено экспоненциальной зависимостью. Однако получить прямую зависимость и = (7) очень трудно, так как она осложняется высокой чувствительностью стабильности раствора и скоростей побочных реакций к изменению температуры. [c.91]

    В ходе автокаталитического восстановления металлов в большинстве случаев выделяется водород (в случае с гидразином— также и азот), скорость выделения которого пропорциональна скорости осаждения металла. Выделение газов способствует перемешиванию раствора. [c.92]

    В литературе имеются отрывочные и противоречивые данные о характере влияния перемешивания на скорость химического восстановления металла. Так, имеются сведения о снижении скорости осаждения при перемешивании щелочных растворов химического никелирования при комнатной температуре. Для горячих щелочно-цитратных растворов химического никелирования не установлено заметного влияния перемешивания на кинетику процесса, в то время как в кислых растворах химического никелирования (при повышенных температурах) перемешивание увеличивает скорость осаждения. [c.92]

    Способы металлизации диэлектриком можно разделить на четыре вида механические, физические, химические и -)лектро-химические. Перечисленные способы применяют как самостоятельно, так и в различных сочетаниях. Чаще всего используют химико-гальваническую металлизацию, в которой на поверхность диэлектриков наносят металл сначала путем химического восстановления из растворов, а затем электрохимически. Большой интерес представляют новые электрохимические методы нанесения металлических покрытий непосредственно на диэлектрики, минуя стадию химического восстановления металлов. [c.96]

    В ходе активирования на поверхности диэлектрика образуются каталитические центры, являющиеся инициаторами процесса автокаталитического восстановления металла. Наиболее универсальными и удобными являются химические методы активирования в жидкой фазе. Они применимы для любых поверхностей. Суть -)тих методов заключается в том, что на активируемую поверхность наносят малые количества металлов-ката-лизаторов (активаторов) или насыщают поверхностные слои сильными восстановителями, способными в растворе химической металлизации легко восстанавливать ионы осаждаемого металла. Наибольшее распространение получил так называе- [c.97]

    Применяют также растворы, позволяющие объединить сенсибилизацию и активацию в одну технологическую операцию. Такие растворы называют совмещенными активаторами. Готовят их, как правило, путем приливания раствора хлорида палладия в солянокислый раствор хлорида олова(II). Вопрос о природе действия совмещенного активатора однозначно пока не решен. Установлено, что как при раздельной активации поверхности диэлектрика, так и в случае применения совмещенного активатора на поверхности диэлектрика образуются активные центры кристаллического палладия или его сплавов с оловом, инициирующие химическое восстановление металлов. Если после активирования поверхность не обладает достаточной каталитической активностью, то в качестве акселератора (ускорителя реакции восстановления металла) применяют повторно раствор активации или сильный восстановитель (чаще тот, который используют при химической металлизации). Для металлизации диэлектриков наиболее часто используют покрытия медью и никелем. [c.98]


    Получение металлических порошков электрохимическим способом основано на восстановлении металлов из растворов их солей в виде рыхлых губчатых осадков на катоде. [c.132]

    Полярографический метод, разработанный Я- Гейровским, состоит в том, что раствор исследуемого вещества подвергают электролизу. При этом изучают зависимость силы тока, протекающего через раствор, от величины приложенного напряжения. Исследованию могут подлежать соединения, восстанавливающиеся на катоде (ионы металлов), или вещества, окисляющиеся на аноде (гидрохинон или другие органические вещества). Принципиальная схема полярографа дана на рис. 48. При исследовании соединений, восстанавливающихся на катоде, катодом обычно служит капельный ртутный электрод, представляющий собой ре- зервуар со ртутью, из которого периодически через капилляр капает ртуть. Возможно также применение микроэлектродов из других каких-нибудь металлов (платина и т. п.). На ртути может происходить выделение металла, образующего или не образующего с ней амальгаму. Восстановление металла может идти либо через стадию промежуточного состояния окисления, либо минуя ее. Полярограммы (кривые зависимости силы тока, протекающего через раствор, от величины приложенного к раствору напряжения) в каждом из перечисленных случаев имеют вид, представленный на рис. 49. [c.291]

    При восстановлении водородом 5,422 г оксида было получено 4,331 г металла. Растворили 10,5 г оксида в 100 мл хлороводородной кислоты и из половины полученного раствора выделили хлорид, который содержал 52,73% хлора. Через вторую часть раствора пропустили постоянный ток напряжением 6 В. При силе тока 1,55 А за 8 мин 22 с выделилось 1,02 г металла. Определите, какой это металл и какова его атомная масса, зная, что удельная теплоемкость металла равна 0,384 Дж/(Кт). [c.20]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Рассматривая катодные процессы, протекающие при электро-лизе водных растворов, нужно прежде всего учитывать величину потенциала процесса восстановления ионов водорода. Этот потенциал зависит, как указывалось выше, от концентрации ионов водорода (см. стр. 119) в нейтральных растворах (pH = = 7) ф = —0,059-7 = —0,41 В. Отсюда ясно, что если электролит образован металлом, электродный потенциал которого значительно положительнее, чем —0,41 В, то из нейтрального раствора у катода будет выделяться металл. Такие металлы находятся в ряду стандартных потенциалов вблизи водорода (начиная приблизительно от олова) и после него. В случае электролитов, металл которых имеет потенциал значительно более отрицательный, чем —0,41 В, на катоде будет выделяться водород. К таким металлам относятся металлы начала ряда стандартных потенциалов — приблизительно до титана. Наконец, если потенциал металла близок к величине —0,41 В (металлы средней части ряда — 2п, Сг, Ре, d, N1), то, в зависимости ог концентрации раствора, температуры и плотности тока, возможно как восстановление металла, так и выделение водорода нередко наблюдается совместное выделение металла и водорода. [c.124]

    Окисленная (ОФ) и восстановленная (ВФ) формы данного металла на границе металл — раствор его соли находятся между собой в равновесии (приэлектродное равновесие), которое в таблице и представлено в виде обратимой реакции  [c.323]

    В виде металла ртуть может быть определена сухим путем (разложение ее соединений и последующая возгонка ртути в виде металлической) или мокрым путем после предварительного восстановления металлами растворов ее солей. Помимо этого, для определения различных количеств ртути используют злек-тролитические методы. [c.75]

    Окиси меди, железа или кобальта восстанавливают водородом, восстановленный металл растворяют в фосфорномолибденовой кислоте и синий раствор титруют КМПО4. Медь можно выделить электролитически на платиновом катоде, потом растворить в фосфорномолибденовой кислоте и титровать КМПО4. [c.221]

    Как показывает рассмотренный пример, при электролизе водных растворов солей, реакция которых близка к нейтральной, па катоде восстанавлнваются те металлы, электродные потенциалы которых значительно положительнее, чем —0,41 В. Если потенциал металла значительно отрицательнее, чем —0,41 В, то на катоде будет выделяться водород . При значениях электродного потенциала металла, близких к —0,41 В, возможно, в зависимости от концентрации соли металла и условий электролиза, как восстановление металла, так и выделение водорода (или совместное протекание обоих процессов). [c.190]

    Катодное восстановление металлов используется для промыщ-ленного получения, а также рафинирования многих металлов. Электролиз в этих случаях проводится обычно в растворах или расплавах электролитов. [c.211]

    Для восстановления металлов в промыи1ленности используются различные процессы. Пирометаллургическими называют процессы восстановлення металлов из безводных соединений при высоких температурах. Гидрометаллургическими являются процессы восстановления металлов из водных растворов их солей. Наконец, к электрометаллургическим относят процессы восстановления металлов электронами катода нри электролизе. [c.236]

    Гидрометаллургия. Процессы восстановления металлов из водных растворов их солей осуществляются при обычных температурах, причем B0 1 а повителями могут служить или сравнительно б( лее активные металлы, или же непосредственно электроны, выделяемые катодом при электролизе. При гидрометаллургическом восстановлении металлы обычно получаются в мелкораздробленном состоянии. Восстановлению из водных растворов могут подвергаться металлы не только из элементарных, ио и из комплексных ионов, например  [c.237]

    При катодной поляризации хрома, нержавеющих сталей и пассивного железа пассивность нарушается вследствие восстановления пленки пассивирующего оксида или пленки адсорбционного кислорода (в зависимости от принятой точки зрения на природу пассивности). К тому же, согласно адсорбционной теории, атомы водорода, образующиеся при разряде ионов Н+ на переходных металлах, стремятся раствориться в металле. Растворившийся в металле водород частично диссоциирован на протоны и электроны, а электроны способны заполнять вакансии -уровня атомов металла. Следовательно, переходный металл, содержащий достаточное количество водорода, более не в состоянии хемосорбиро-вать кислород или пассивироваться, так как у него заполнены -уровни. [c.98]

    На поверхность химически наносят проводящий слой путем восстановления металлов (Ag, Си, Аи, Pt и др.) из водных растворов их солей или получают пленки в виде сернистых соединений некоторых металлов (Ag, Си). Наиболее широкое применение получили пленки серебра и меди. Серебро восстанавливается из раствора АдЫОз или комплексной аммиачной соли Ag(NHз) NOз органическими восстановителями (формальдегид, глюкоза, моносахариды, сегнетова соль, пирогаллол и т. д.). Медь восстанавливается из аммиачных и щелочных глицератных растворов сахаром, сегнетовой солью, формальдегидом, гликолем, фенилгидразином, гидроксиламином и др. В обоих случаях необходима предварительная обработка — сенсибилизация — поверхности формы 0,1—3%-ным раствором двухлористого олова (погружением или распылением) с последующей тщательной [c.443]

    Опыт 1. Сравнение химической активности цинка и кадмия. Получение кадмия химическим восстановлением из растворов его соединений. В пробирку с раствором Сё504 опустите пластинку металлического цинка. Объясните наблюдаемое. Через час извлеките непрореагировавший цинк, выделившийся металл отфильтруйте, п ромойте горячей водой, просушите на воздухе. [c.170]

    При элек-фолизе водных растворов солей, катионы которых в ряду стандартных элеюродных потенциалов находятся между катионами алюминия и протонами, происходит одновременное восстановление металла и водорода. [c.176]

    Как правило, концентрированная HNO4 восстанавливается до NO2, а разбавленная — до более высоких степеней восстановления. Большинство металлов растворяется в азотной кислоте. Нерастворимы только золото, платина и некоторые металлы платиновой группы. Концентрированная азотная кислота образует на поверхности железа, [c.133]

    Иногда при очистке (аффинаже) ПЭ для восстановления применяют электрохимические методы, а также химическое восстановление металлами (Mg, Zn), газообразным Нз, щавелевой и уксусной кислотами и др. Следует иметь в виду также способность Pd растворяться в HNO3, тогда как для переведения в раствор других ПЭ в металлическом состоянии нужны более жестко действующие химические средства. [c.160]


Смотреть страницы где упоминается термин Восстановление металлами в растворах: [c.14]    [c.245]    [c.192]    [c.94]    [c.91]    [c.144]    [c.179]    [c.283]    [c.170]    [c.152]   
Установление структуры органических соединений физическими и химическими методами том 2 (1967) -- [ c.73 , c.76 , c.376 , c.377 , c.657 , c.663 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановление катиона до свободного металла, растворяющегося в ртутной капле

Восстановление металлами

Восстановление растворами металлов в жидком аммиаке и аминов

Восстановление растворенного кислорода металла

Восстановление растворяющимися металлами

Горбунова, М. В. Иванов. Новые исследования в области механизма и условий восстановления металлов из растворов с борсодержащими соединениями

Металлы растворов

Получение металлов и некоторых неметаллов восстановлением водных растворов солей

Получение металлов и неметаллов восстановлением водных растворов солей

Электролиз водных растворов без получения металлов Окислительно-восстановительные процессы Электролитическое восстановление



© 2024 chem21.info Реклама на сайте