Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Штерна Фольмера уравнение

    ШТЕРНА — ФОЛЬМЕРА УРАВНЕНИЕ, описывает тушение люминесценции и торможение фотохим. р-цин в присут. добавок (тушителей) ф°/ф = 1 -t- иСО], где ф и ф — квантовый выход люминесценции (нлн фотохим. р-ции) соотв. в отсутствии н в присут. тушителя с конц. [Q] и — константа тушения. Если тушение происходит в результате взаимод. возбужд. молекул с тушителем (динамич. тушение), то и = где й, — константа скорости этого взаимод., т° — время жизни возбужд. молекул в отсутствии тушителя. Еслн тушение связано с комплек-сообразоваиием молекул в осн. состоянни, то и = i e /e, где К — константа равновесия комплексообразования, Е и е — коэф. экстинкции в-ва н комплекса соотв. Обычно Ш.— Ф. у. прнмен. для р-цнй в р рах. Оно является приближенным, поскольку не учитывает нестационарных эффектов, существенных для короткоживущих (т° 10 с) возбужд. состояний. Предложено О. Штерном п М. Фоль-мером в 1919. [c.690]


    Тушение флуоресценции при столкновениях приводит к уменьшению выхода флуоресценции, которое следует закону Штерна — Фольмера [уравнение (73)]. Однако точно такая же зависимость получается и в тех случаях, когда тушитель образует с флуоресцентной молекулой нефлуоресцирующий комплекс, но сам по себе не тушит возбужденное состояние не связанной в комплекс молекулы (см. раздел II, Б, 2). Измеряя время жизни испускания, можно сделать выбор между двумя упомянутыми механизмами тушения. В случае тушения при столкновениях время жизни снижается пропорционально интенсивности флуоресценции, а в случае образования комплексов опо не изменяется. Измерения поляризации флуоресценции являются простым косвенным методом определения времени жизни и поэтому позволяют выяснить, какой из двух механизмов тушения имеет место [312]. [c.374]

    Построив зависимость величины обратного квантового выхода от обратной концентрации вещества Р и зная время жизни то, можно найти значения констант скоростей фотохимической реакции к и индуцированной безызлучательной дезактивации С другой стороны, отношение квантовых выходов флуоресценции в отсутствие и в присутствии тушителя Р согласно уравнению Штерна — Фольмера может быть записано в следующем виде  [c.138]

    При наличии веществ, тормозящих фотохимическую реакцию в системе, квантовый выход реакции в их присутствии определяется ио уравнению Штерна — Фольмера [c.101]

    Соотношение (3.44) называется уравнением Штерна— Фольмера. Оно позволяет определить константу скорости реакции тушения кд по изменению относительной интенсивности флуоресценции ///о в зависимости от концентрации тушителя. Абсолютные значения интенсивности флуоресценции не требуются, что значительно упрош,ает измерения. [c.143]

    Уравнение (IV.52)—аналог уравнения Штерна—Фольмера (IV.50), получаемого при импульсном фотовозбуждении. Из сравнения уравнений (IV.50) и (IV.52) видно, что тушение флуоресценции (фо/ф) и константы скорости затухания флуоресценции (О1 и Ог) по-разному зависят от концентрации тушителя. Поэтому в обычно используемых графиках зависимости фо/ф и То/т от концентрации тушителя значения фо/ф и То/т не совпадают между собой даже в отсутствие статического или нестационарного тушения. Величина т в обычных экспериментах определяется по наклону кинетической кривой затухания флуоресценции в полулогарифмических координатах (1 /, /). При этом в зависимости от величины 0 значение 1/т будет совпадать или с в 1 (при 0 10 ) или с 2 (при 0 1). Пря значениях /г 1[Р]<С 1/то величины фо,/ф и то/х должны совпадать друг с другом. [c.96]


    При выводе уравнения Штерна — Фольмера предполагалось, что реакция тушения происходит за одно столкновение. На самом деле образование возбужденного комплекса идет по двум направлениям, и общая схема выглядит следующим образом к, й, [c.60]

    Соотношение (И1.27) называется уравнением Штерна— Фольмера. Оно позволяет определить константу скорости реакции тушения из данных изменения относительной интенсивности флуоресценции ///о в зависимости от концентрации тушителя. Знания абсолютных значений интенсивности не требуется, что значительно упрощает измерения. [c.66]

    Уравнение Штерна — Фольмера выполняется на опыте практически всегда. Однако выполнимость уравнения Штерна — Фольмера не может служить доказательством того, что тушение флуоресценции идет по диффузионному механизму. Часто тушение флуоресценции происходит параллельно по двум механизмам — статическому и диффузионному. Иногда необходимо отделить один механизм от другого. Для этого исследуют зависимость времени жизни возбужденных молекул от концентрации тушителя. Уменьшение времени жизни возбужденных молекул при увеличении концентрации тушителя свидетельствует о диффузионном механизме тушения, а независимость времени жизни от концентрации тушителя указывает на преобладание статического механизма тушения. Количественно статический и диффузионный механизмы разделяют, сопоставляя зависимость относительного квантового выхода флуоресценции фо/ф и относительного значения времени жизни возбужденных молекул Tq/t от концентрации тушителя  [c.61]

    Совпадение значений суммы констант скоростей (/ -Н/гг), которая рассчитывается из зависимости обратного квантового выхода фотохимической реакции от обратной концентрации вещества Р и из уравнения Штерна — Фольмера, может служить доказательством протекания фотохимической реакции из синглетного возбужденного состояния. [c.138]

    С другой стороны, диффузионное тушение будет преобладать при малой концентрации А-В и при эффективном тушении в растворителях с умеренной вязкостью. Тогда величиной [7а можно пренебречь и уравнение (111.30) сводится к уравнению Штерна—Фольмера  [c.67]

    При выводе уравнения Штерна—Фольмера предполагалось, что каждое столкновение приводит к тушению флуоресценции. Однако образование возбужденного комплекса столкновения может происходить обратимым путем. Тогда схема выглядит следующим образом  [c.144]

    Уравнение Штерна — Фольмера [c.184]

    Рнс. 4.2. Тушение флуоресценции в координатах уравнения Штерна—Фольмера. [c.185]

    HaoS. значение в химии имеет фотолюминесценция. Ее характеризуют спектрами поглощения и люминесценции, поляризацией Л., энергетич. выходом (отношение энергии, излучаемой телом в виде Л., к поглощенной энергии), квантовым выходом (отношение числа излученных квантов к числу поглощенных), кинетикой. Максимум спектра фотолюминесценции обычно сдвинут в длинноволновую область по отношению к максимуму спектра поглощения (закон Стокса). Спектры поглощения и флуоресценции приблизительно зеркально симметричны, если они изображены в шкале частот (прави-чо зеркальной симметрии). Квантовый выход фотолюминесценции постоянен, если длина волны возбуждающего света Хе меньше длины волны Л. Хф, и резко уменьшается при X. > X (закон Вавилова). Зависимость интенсивности фотолюминесценции I от времени t для свечения дискретных центров имеет вид /(i) = = 7оехр(—i/x), где/о — интенсивность возбуждающего света, г — время жизни частиц на возбужд. уровне. Для рекомбинац. Л. I(t) = /о/(1 -(- pi) , где р — константа, 1 < а < 2. При повышении т-ры, увеличении концентраций в-ва, изменении pH, наличии примесей (в т. ч. Оз) наблюдается уменьшение выхода Л.— тушение. Различают тушение без уменьшения и с уменьшением г — соотв. статическое и динамическое, или тушение 1-го и 2-го рода (см. Штерна — Фольмера уравнение). [c.306]

    Степень тушения люминесценции частицами тушителя выражается уравнением Штерна - Фольмера  [c.507]

    ШТЕРНА - ФОЛЬМЕРА УРАВНЕНИЕ, описывает тушение люминесценции н торможение фотохим. р-ций в присут. добавок (тушителей) ф°/Ф = 1-1 и10], где Ф и ф квантовый выход люминесценции (йлн фотохим. р-ции) соотв. в отсутствии и в прйсут. тушителя с конц. 10] к — константа тушения. Если тушение происходит и результате взаимод. возбужд. молекул с тушителем (динамич. тушение), то и = , г , где й, — константа скорости этого взаимод., т — время жизни возбужд. молекул в отсутствии тушителя. Если тушение связано с комплек-сообраэованием молекул в осн. состоянии, то н = Ке /е, где К — константа равновесия комплексообразования, [c.690]

    При выводе уравнения Штерна — Фольмера (8.15) было принято, что реакция внешнего тушения (8.4) [или (8.5), или (8.6)] происходит за одно столкновение. Однако, когда молекулы X и Q подходят друг к другу, диффундируя через раствор, они находятся в клетке растворителя и претерпевают несколько столкновений, прежде чем разойдутся (стр. 282). Поэтому можно сказать, что они образуют комплекс столкновения . Возбужденный комплекс, следовательно, может образоваться двумя способами либо молекула Q встречает возбужденную молекулу X в результате диффузии, либо невозбужденные молекулы X и Р образуют комплекс столкновения, который затем возбуждается, поглощая свет. (В приведенном выше простом рассмотрении вторым путем пренебрегли.) Образовавшийся любым способом возбужденный комплекс столкновения дает затем дезактивированный продукт. Различают два пути, называя их диффузионным и статическим тушением .  [c.155]


    Флуоресцирующие ионы присутствуют в водных растворах таких веществ, как флуоресцеин и сернокислый хинин. Флуоресценцию тушат добавлением солей, например подпетого калия. Сравнение констант скорости Aq, рассчитанных по уравнению Штерна — Фольмера, с константами, рассчитанными по теории процессов, лимитируемых диффузией (стр. 22), показывает, что тушение происходит при всех или при большинстве столкновений, по-видимому, из-за переноса энергии [34]. При добавлении глицерина для увеличения вязкости раствора, как и следовало oh i-дать, константа скорости уменьшается [36]. При изменении ионной силы константа скорости меняется таким же образом, как константа скорости обычной ионной реакции второго порядка т. е. при очень низких концентрациях (0,01 М) зависимость log к от корня квадратного из ионной силы приближается к линейной, как это предсказывается теорией Дебая — Хюккеля [35] (см. также стр. 166 и сл.). [c.163]

    Тущение включает и самотущение, т. е. процесс, в котором роль тущителя играет флуоресцирующее вещество. В умеренно разбавленных растворах (<10 М) переносом энергии и са-мотущением можно пренебречь. Константу скорости тущения посторонним веществом (йд) можно рассчитать, зная константу тушения Штерна — Фольмера [уравнение (75)] и время жизни флуоресценции в отсутствие данного тушителя (то). Способы определения остальных трех констант скорости будут рассмотрены в следующих разделах. Следует отметить, что константа скорости внутренней конверсии включает скорость тущения флуоресценции растворителем. Как мы увидим, это тушение может представлять собой фотохимическую реакцию или же такое взаимодействие, которое повышает скорость интеркомбинационной конверсии. [c.286]

    При облучении раствора X светом измеряется спектрофотометрически интенсивность флуоресценции без Q(/() и в присутствии Q(/). Зависимость / от Q описывается уравнением Штерна — Фольмера  [c.292]

    Штейны 3/2, 6, 93, 474,485,486, 1068, 1069 4/346, 592, 593 Штемпельные краски 3/131 Штерна потенцнал 4/952 Шгерна-Фольмера уравнения 2/1224 5/812 [c.753]

    Применение к этим результатам уравнения Штерна — Фольмера (8.14) дает значение kQXi = 650 л-молъ поскольку т, независимо известно и равно 1,2-10 сек, константа скорости димеризации составляет 5-10 л-молъ -сек . [c.161]

    Флуоресценцию тушат ионы железа(П) и (III). Было найдено, что константа к в уравнении Штерна — Фольмера (8.15) равна 0,6 л-молъ для Fe + и 2,6 л-молъ для Fe +. Следовательно, константа скорости / q для бимолекулярного тушения ионом железа(П) [по уравнению (8.16)] составляет 4-10 л- [c.165]


Смотреть страницы где упоминается термин Штерна Фольмера уравнение: [c.402]    [c.90]    [c.91]    [c.96]    [c.98]    [c.61]    [c.90]    [c.91]    [c.98]    [c.144]    [c.185]    [c.186]    [c.195]    [c.547]   
Быстрые реакции в растворах (1966) -- [ c.153 , c.155 , c.156 , c.161 , c.163 , c.165 ]

Фото-люминесценция растворов (1972) -- [ c.75 ]

Новейшие методы исследования полимеров (1966) -- [ c.171 ]

Фотохимия (1968) -- [ c.534 ]




ПОИСК





Смотрите так же термины и статьи:

Фольмер, уравнение

Фольмера

Штерна

Штерна Фольмера

Штерна Фольмера уравнение модифицированное



© 2025 chem21.info Реклама на сайте