Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горяев

Рис. 1. Плавильные печи устраивали таким образом, чтобы в них можно было получать из руды ковкий или плавкий металл. Медную руду (а) плавили в тигле. Железную руду (б) смешивали с древесным углем и, чтобы повысить температуру пламени, продували при помощи кузнечных мехов через горящую смесь воздух. Рис. 1. <a href="/info/21369">Плавильные печи</a> устраивали <a href="/info/461013">таким образом</a>, чтобы в них можно было получать из руды ковкий или <a href="/info/365631">плавкий металл</a>. <a href="/info/223494">Медную руду</a> (а) плавили в тигле. <a href="/info/17598">Железную руду</a> (б) смешивали с древесным углем и, чтобы повысить <a href="/info/1640957">температуру пламени</a>, продували при помощи <a href="/info/1359675">кузнечных мехов</a> через горящую смесь воздух.

    Изучая свойства углекислого газа, Блэк обнаружил, что свеча в нем не горит. Свеча, горящая в закрытом сосуде с обычным воздухом, в конце концов гаснет, и оставшийся воздух уже не поддерживает горения. Такое явление, конечно же, не казалось беспричинным, поскольку было известно, что при горении свечи образуется углекислый газ. Но когда Блэк абсорбировал углекислый газ, оставшийся воздух, который заведомо не был углекислым газом, горение не поддерживал. [c.40]

    При сжигании угольной пыли лучеиспускание факела увеличивается с увеличением числа горящих угольных частиц. [c.153]

    Источниками инициирования взрыва являются горящие или накаленные тела, электрические разряды, тепло химических реакций и механических воздействий, искры от удара и трения, ударные волны, солнечная радиация, электромагнитные и другие излучения. [c.21]

    Блэк предложил изучить эту проблему одному из своих учеников — шотландскому химику Даниелю Резерфорду (1749—1819). Резерфорд поставил следующий опыт он держал мышь в ограниченном объеме воздуха до тех пор, пока она не погибла. Затем в оставшемся воздухе он держал горящую свечу, пока она не гасла. В оставшийся после всего этого воздух он поместил горящий фос1 фор, который горел там очень недолго. Далее Резерфорд пропустив [c.40]

    На установке деасфальтизации произошла авария с групповым несчастным случаем. На паровом насосе марки ПНС, предназначенном для перекачки раствора смолистых веществ в пропане, оборвалась шпилька сальникового уплотнения и поломался фланец грундбуксы, В результате интенсивного выделения пропана была загазована территория установки и склада битума. От горящих форсунок трубчатой печи газовоздушная смесь воспламенилась. Обрыв шпильки был вызван некачественным ее изготовлением в механической мастерской. Для изготовления шпильки была использована Сталь 20 вместо Стали 35 (по паспорту). Шпилька не подвергалась термической обработке, и качество ее изготовления не проверялось. Отсутствовал сертификат на прутки для изготовления шпилек. Без согласования с заводом-изго-товителем был заменен металл фланца грундбуксы и изменена температура, [c.226]

    Надо помнить, что горящие нерастворимые в воде жидкости тушить водой нельзя, поэтому, когда загораются нефтепродукты, нельзя применять для тушения воду, иначе пожар не только не будет ликвидирован, но может распространиться. [c.277]

    По аналогичным причинам на газофракционирующем блоке установки каталитического крекинга нефтеперерабатывающего завода произошла авария во время вывода установки на технологический режим после капитального ремонта. В процессе пуска обнаружили, что трубопровод перетока из колонны стабилизации в рибойлеры заморожен. Не снизив давления в системе установки и не отключив трубопровод, оператор начал разогревать паром замороженный участок. Через ранее образовавшийся разрыв трубопровода, который не был замечен, так как находился под изоляцией, стал интенсивно выделяться газообразный продукт. Газовоздушная смесь, распространившись по аппаратному двору установки, воспламенилась от горящих форсунок трубчатой печи. [c.110]


    Каждому виду жидких углеводородов (нефтепродукт, сжиженный газ) соответствуют определенные условия горения. Поэтому не может быть единого метода тушения всех жидких углеводородов. Применение единого метода не только неверно, но и опасно. Свойства жидких углеводородов определяют выбор огнетушащего вещества и способа тушения. Эффективная борьба с пожарами включает два этапа ограничение распространения огня и его тушение. Важное значение как для предотвращения распространения огня, так и для тушения его имеют правильное распределение потоков охлаждающей жидкости, обеспечение необходимого количества воды и доставки ее к очагу пожара. Важное значение имеет также наличие и техническое состояние дренажной системы, предотвращающей попадание потоков горящих жидких нефтепродуктов к другим объектам за пределами очага пожара. [c.144]

    Цепь с тройными связями находится в еще большем напряжении, чем с двойными. (К слову сказать, четвертой связи не бывает вообще.) Чтобы тройные связи не разрывались, требуется довольно большая энергия. Когда ацетилен горит, тройная связь разрывается, и вся эта энергия превращается в тепло. Вот почему пламя горящего ацетилена гораздо горячее, чем пламя этана или этилена. [c.48]

    При обычной температуре и рассеянном освещении реакция протекает крайне медленно. При нагревании смеси газов пли действии света, богатого ультрафиолетовыми лучами (прямой солнечный, свет горящего магния и др.), смесь взрывается. Как показали многочисленные исследования, эта реакция проходит через отдельные. элементарные процессы. Прежде всего за счет поглощения кванта энергии ультрафиолетовых лучей (или за счет нагревания) молекула хлора диссоциирует на свободные радикалы — атомы хлора  [c.200]

    Характеристика взаимодействия горящего вещества со средствами водопенного тушения 4- -1- + [c.14]

    Характер взаимодействия горящего вещества со средствами водопенного тушения — учитывают при разработке рекомендаций по средствам и способам тушения пожаров. [c.15]

    Одним из элементов защиты от пожаров является сооружение временных дренажных систем. Пожары на резервуарах с нефтепродуктами тушат воздушно-механической или химической пеной, подаваемой в очаг горения стационарными пенокамера-ми или передвижными пеноподъемниками. Пенокамеры и пено-подъемники оборудуют генераторами, в которых образуется воздушно-механическая пена. Химическая пена образуется в рукавной линии, транспортирующей водный раствор пеногенераторного порошка. В этом случае пенокамеры и пеноподъем-ники играют роль пеносливов и не имеют генераторов пены. Пенокамеры воздушно-механической пены устанавливают вблизи верхней кромки резервуара из расчета равномерного рас-пределения пены по поверхности горящей жидкости. Расчетные расходы пены для тушения пожаров на складах нефти и нефтепродуктов принимаются в соответствии со СНиП П-106— 79 Склады нефти и нефтепродуктов . В настоящее время прн тушении пожаров нефтепродуктов предпочтение отдают воздушно-механической пене. [c.144]

    На установке атмосферно-вакуумной перегонки нефти с ограниченной пропускной способностью промышленной канализации проводили дренирование газового конденсата из емкости сбора его с факельных трубопроводов. Под напором паров бензина была сброшена крышка с канализационного колодца, из которого произошел выброс воды с нефтепродуктами. После прекращения дренирования конденсата в канализацию и уменьшения сброса в нее воды из дегидраторов установки электрообессоливания удалось снизить уровень стоков в канализацию, но последняя оставалась переполнен- ой. Однако оператору было приказано восстановить сброс воды из дегидраторов. При возобновлении этой операции произошел второй выброс воды с продуктом уже из двух канализационных колодцев. Пары нефтепродуктов достигли горящих форсунок трубчатой печи установки и воспламенились. [c.67]

    В производстве этилена произошел взрыв горючих газов. Комиссия установила, что первоначально разорвался линзовый компенсатор факельного трубопровода, а это привело к утечке газа и загазованности территории. Газовое облако, достигнув горящих форсунок печей пиролиза, воспламенилось, пламя распространилось в места с повышенной концентрацией газа, после чего последовал взрыв газовоздушной смеси. Анализ аварии позволил сделать следующие выводы  [c.206]

    В товарно-сырьевом цехе нефтеперерабатывающего завода произошла авария, в результате которой были выведены из строя восемь подземных железобетонных резервуаров объемом по 10000 м каждый. Авария была вызвана разрядом атмосферного электричества на дыхательной арматуре двух резервуаров, что привело к взрыву с обрушением кровли и пожару. В течение 3—5 мин пожар распространился на четыре рядом расположенных резервуара, а затем еще на два. Этому способствовали выбросы продукта из горящих резервуаров. Только через сутки удалось ликвидировать пожар. [c.135]


    При пропаривании не полностью освобожденного конденсатора на установке деасфальтизации пар подавали сверху вниз через патрубок, расположенный над технологическим лотком. В последнем были проложены нагретые трубопроводы. Попадая в лоток, пропан испарялся, что привело к загазованности территории установки и воспламенению его от горящих форсунок. [c.192]

    Источниками воспламенения могут быть также внешние факторы горящие факелы, печи пиролиза, автомобильный транспорт и т.д. [c.108]

    Небольшое количество разлитой жидкости перекиси поглощают кизельгуром или песком. Бурно горящие перекиси (например, перекись бензоила) можно сжигать только в небольших количествах, соблюдая меры предосторожности. Перекись можно разлагать избытком 10%-ного раствора щелочи с последующим сливом обезвреженного раствора. Перекисные производные метилэтилкетона разлагают большим избытком 20%-ного раствора едкого натра. Грег-бутилгидроперекись удаляют обработкой не менее чем десятикратным избытком воды. Большое количество твердых или пастообразных перекисных продуктов сжигают в безопасном месте, поджигая их запальным шнуром. [c.147]

    На одном заводе при пуске блоки разделения воздуха БР-9М. были выведены на режим со сбросом кислорода в атмосферу через глушитель, предназначенный для сброса кислорода. Поэтому вблизи места выброса газа создалась, зона с повышенной концентрацией кислорода в атмосферном воздухе. В этой зоне оказался посторонний человек, одежда которого воспламенилась от горящей папиросы. Одежда воспламенилась также на рабочем, прибывшем для оказания помощи пострадавшему. В результате два человека получили термические ожоги разной степени. [c.381]

    В октябре 1774 г. Париж посетил Пристли и рассказал Лавуазье о своем открытии дефлогистированного воздуха . Лавуазье сразу же оценил значение этого открытия. В 1775 г. он выступил с докладом в Академии наук, а вскоре подготовил и статью, в которой утверждал, что воздух является не простым веществом, а смесью двух газов. Одну пятую воздуха, по мнению Лавуазье, составляет дефлогистированный воздух Пристли (Лавуазье, к сожалению, оспаривал у Пристли честь открытия кислорода). И именно эта часть воздуха соединяется с горящими или ржавеющими предметами, переходит из руд в древесный уголь и необходима для жизни. [c.47]

    На одном из нефтеперерабатывающих заводов во время эксплуатации установки атмосферно-вакуумной перегонки нефти (АВТ) вышел из строя регулирующий клапан сброса воды из конденсатора смешения (абсорбера),, и в коллектор сточных вод проник бензин. В тот же коллектор поступала охлаждающая вода с температурой 80 °С из холодильника, предназначенного для охлаждения гудрона. При смешивании с горячей водой началось испарение бензина, и пары бензина из коллектора проникли на территорик> установки (аппаратного двора). Достигнув горящих форсунок трубчатой печи, пары бензина воспламенились. Как оказалось, на заводе было неудовлетворительно организовано обслуживание и ремонт средств КИПиА, на узле сброса воды из абсорбера не был установлен прибор, отключающий сброс ее при понижении уровня ниже допустимого, отсутствовала сигнализация на щите управления в операторной. [c.157]

    Таким образом, жизнь существует благодаря конт-ролиру емому окислению — тому самому, которое мы используем в печах, газовых горелках или в горящей спичкё. [c.84]

    По Гофману теория замещения Дюма обязана своим воэникнове-нием званому вечеру во дворце Тюильри в Париже [1], когда в залах вдруг появились очень раздражающие пары, исходящие, по-видимому, от свечей, горящих коптящим пламенем. Броньяр, директор Севрской фарфоровой фабрики и придворный химик Карла X, поручил исследование этого случая своему зятю Дюма, который установил, что раздражение вызывал хлористый водород. Причиной его появления было то, что поставлявшиеся во дворец восковые свечи отбеливались хлором. [c.530]

    Перебор вариантов (с добавкой малой толики удачи) привыкли считать единственно возможной технологией изобретателы тва. Неэффективность этого метода воспринималась как нечто естественное, само собой разумеющееся. Что поделаешь... творчество Увеличим число сотрудников в лаборатории... Но научно-техническая революция буквально завалила горящими задачами институты, конструкторские бюро, лаборатории. Пришлось обратить внимание на методы активизации перебора вариантов. Эти методы отнюдь не ломали старую, привычную технологию творчества. Они просто интенсифицировали обычный метод проб и ошибок. Это был бунт против слепого перебора вариантов. Но бунт на коленях... [c.18]

    С помощью простой технологической схемы (рис. 9) можно кратко пояснить метод. После нагрева в подогревателе до 350— 400 °С сырье пиролиза впрыскивают вместе с перегретым паром в реактор 7 с кипящим слоем, состоящим из кварцевого песка с диаметром песчннок 0,4—1,2 мм. В результате контакта с горячими дымовыми газами н прямого обогрева горящим мазутом песок накаляется до 1000 °С и пневмотранспортом через сборник 5 подается в реактор, где его температура составляет —850 °С. Сырье пиролиза нагревается в реакторе до необходимой температуры, время контакта 0,3—0,5 с. Нпже приведена температура нагрева различных видов сырья (в С)  [c.30]

    Относится к числу газоэлекчрических способов резки (рис. 3.20). Суишость заключается в расплавлении металла I в месте реза теплом электрической дуги, горящей между угольным или графитным электродом 2, с непрерывным удушением жидкого металла сфуей сжатого воздуха 3. Таким образом, способ основан на совместном дейсгвии тепла дуги и потока сжатого воздуха, кинетическая энергия которого способствует удалению продуктов сгорания. [c.116]

    В зависимости от гемпературы охлаждения, степени переохлаждения, скорости охлаждения феррито - цементитной смеси получается различной степени дисперсности перлит, сорбит, бейнит, троостит. Свариваемость - хорошая, сварка выполняется без применения подогрева. Сварные швы не склонны к образованию горящих и холодных фещин. [c.208]

    Расчетные зависимости в этом случае имеют более сложный вид. Помимо теплоизлучения твердых тел (горящего на топочной решетке угля, шлаковой ванны, нагревающих поверхностей), имеет место тепловое излучение также от светящегося пламени в топках, от некоторых есветящихся газов и паров (например, СОг, Н2О, ЗОг) и от частиц угольной пыли. [c.140]

    Установку атмосферной перегонки нефти, рассчитанную на нотенциаль- ое содержание бензина 5—8,4%, перевели без соответствующих расчетов и изменений технологического регламента на нефть с потенциальным содержанием бензина до 20,6%, что привело к переполнению водоотделителей н попаданию бензина в лотки с трубопроводами. Смесь испарившегося бензина с воздухом воспламенилась от горящих форсунок трубчатой печи. [c.67]

    На сливно-наливной эстакаде нефтеперерабатывающего завода возник пожар и пострадал сливоразливщик. На этом заводе нефть из железнодорожных цистерн сливали открытым способом в желоб между рельсами, а из него в заглубленный резервуар, что приводило к загазованности территории эстакады. Пожар возник в районе проезжей части дороги от горящей папиросы. Сливоразливщик получил тяжелые термические ожоги. [c.117]

    Особенностью некоторых нефтепродуктов является их способность к образованию тепловой волны (прогретого слоя) при поверхностном горении в резервуарах. В случае горения нефтепродуктов с узкой областью выкипания тепло пожара проникает только в тонкий поверхностный слой. При горении сырых нефтей и жидких углеводородов с широкой областью выкипания низкокнпящие фракции углеводородов уходят с поверхностей и подпитывают пламя, а высококипящие углеводороды устремляются вниз через прогретый слой, образуя нагретый фронт более глубоко расположенных слоев жидких углеводородов. Это явление называют тепловой волной. Тепловая волна растет вследствие подвода тепла и ухода паров, пока не выкипят все более легкие углеводороды или пока она не достигнет водяного или эмульсионного слоя. В последнем случае возникает паровой взрыв с выбросом горящего продукта. [c.143]

    В 1966 г. в г. Фейзин (Франция) на складе сжиженного газа нефтеперерабатывающего завода произошел крупный пожар. При отборе пробы газа из сферического резервуара не удалось перекрыть трубопровод, ведущий в нижнюю часть резервуара, так как в вентиле образовался лед. Из вытекающего сжиженного газа образовалось газовое облако, которое распространилось на сотни метров и достигло источника загорания. Возник сильный пожар. Для предупреждения взрыва пожарные стали охлаждать горящий и соседние резервуары водяными струями. Но предотвратить взрыв было невозможно. При взрыве погибло шестнадцать человек, из них — десять пожарных серьезно пострадали шестьдесят человек, из них — сорок пожарных. [c.143]

    Обычную пену нельзя использовать при тушении горящих сжиженных газов, поскольку они легко испаряются, барботи-руют через слои пены и продолжают гореть. Кроме того, вода подаваемая на образование пены, передает тепло кипящим сжиженным газам, что приводит к резкому увеличению их испарения со свободной поверхности. При тушении пожаров сжиженных углеводородных газов применяют специальные порошкообразные огнетушащие средства. Действие их заключается в обрыве цепной реакции, происходящей при горении жидких углеводородов, поскольку образуются мельчайшие частички, которые предотвращают доступ кислорода к горящему продукту. [c.145]

    Сведения о количестве огнетушащего порошка, необходимом для ликвидации пожара сжиженного углеводородного газа, различны. Так, исследования по тушению пожаров, проведенные в Луизиане (США), показали, что минимальный расход сухих порошков должен составлять 0,68 кг/(м ). Порошок с такой скоростью нужно подавать в течение 1 мин. Опыты по тушению горящего сжиженного углеводородного газа на о. Чарльза (США) свидетельствуют, что минимальный расход порошка должен составлять 2 кг/(м ) и такой расход должен поддерживаться в течение 1 мин. Расчеты показывают, что если принять расход порошка 1 кг/(м2-с), то на тушение пожара сравнительно небольшой площади 45X15 м необходимо подать около 14 т порошка в 1 мин. Оборудование для подачи порошка громоздко и непрактично. Но если пожар и потушен, огнетушащий порошок не снижает испарения сжиженных газов, поэтому существует угроза повторного воспламенения. Таким образом, для тушения пожара сжиженных газов большой площади противопожарное оборудование с применением сухого порошка практически не может быть применено. [c.145]

    На установке гидроочистки дизельного топлива взорвался компенсатор, так как уровень жидкости в сепараторе понизился ниже допустимого, п водородсодержащий газ проник в отпарную колонну. Как выяснилось впоследствии, водородсодержащий газ не мог быть сброшен из отпарной колонны через предохранительный клапан, поскольку не был предусмотрен обогрев факельного трубопровода и в нем образовалась ледяная пробка. Предохранительный клапан, установленный на трубопроводе, по которому отводят гидрогеиизат, за регулирующим клапаном, также не обеспечил сброса давления, так как был перекрыт. Вследствие неудовлетворительной работы регулирующих клапанов на сепараторе обслуживающий персонал регулировал уровень гндрогенизата вручную задвижками на байпасных линиях. На трубопроводах для вывода гидрогенизата из сепараторов не были установлены предусмотренные проектом регулирующие клапаны. От превышения давления и разрыва компенсатора пары бензина с водородсодержащим газом распространились по территории установки и, достигнув горящих форсунок трубчатой печи, воспламенились. [c.158]

    При ремонте комбинированной газомазутной форсунки работающей трубчатой печи трубопровод подачи жидкого топлива не был освобожден от него. Газоопасные работы вели без наряда-допуска. При разбалчивании фланцевого соединения форсунки и трубопровода произошел выброс жидкого топлива, которое воспламенилось от горящих форсунок. Расследование показало, что инженерно-технический персонал не контролировал ремонтные работы. [c.192]

    Отходы, содержащие перекисные соединения или некондицион ную продукцию, желательно удалять с предприятия и уничтожать Методы удаления и уничтожения зависят от физико-химической характеристики данной перекиси. Легко растворяющиеся в воде перекиси можно удалять большой струей проточной воды. Для сжигания предварительно растворенных перекисей применяют специально оборудованные установки. Горящий растворитель воспламеняет или разлагает большинство перекисей, причем реакция протекает спокойно, так как перекись находится в небольших количествах. [c.147]

    При попытке устранить утечку сжатием соединения (ударами к.чюча) произошло воспламенение пропановоздушной смеси. Несмотря на быстрое прибытие пожарной команды и охлаждение водой горящей цистерны с пропаном, через 10 мин произошел взрыв. При взрыве осколки были отброшены на 365 м. Диаметр огненного шара над землей достигал 45—60 м, а грибовидное облако дыма размером 300 м поднялось на высоту нескольких сотен метров. При тушении пожара погибли 20 человек пожарных, находившихся в 45 м от взорвавшейся цистерны. Получили ожоги различной степени 95 человек, находящихся на расстоянии до 300 м от цистерны. [c.191]

    Пожары могут возникнуть также при нагреве деревянных строений или других сооружений, выполненных из горючих неметаллических материалов с низким коэффициентом теплопроводности до температуры их самовоспламенения. Например, деревянные строения могут воспламеняться в зоне с интенсивностью тепла 33— 45 МДж7(м2-ч) [8—10 Мкал/(м2-ч)]. Воздействию радиационного теплового излучения от горящего факела может подвергаться производственный персонал, находящийся вблизи факельного ствола. Опасное воздействие горящего факела на производственный персонал определяется не только общим количеством воспринятого тепла, но и интенсивностью теплового излучения. Это особенно важно учитывать при расчетах периодически действующих факелов, на которых могут неожиданно сжигаться большие объемы газов при аварийных сбросах, а следовательно, и интенсивность излучения при этом может достигать опасных для персонала пределов. [c.201]

    В литературе описано много аварий, вызванных воспламенением от печей пиролиза этилена, факельных и других углеводородных газов, утечка которых была вызвана разными причинами. Поэтому необходимо принимать меры по изменению технолопии сжигания топлива в печах пиролиза и крекинга и улучшению конструкции горелок. В любом случае необходимо разрабатывать средства, исключающие неорганизованный подсос воздуха в топки из окружающей среды. Необходимо, по-видимому, создавать условия, при которых воздух подается из безопасных мест в горелку печей под небольшим избыточным давлением, с тем чтобы исключить случайный подсос взрывоопасных газов. Следует блокировать системы сжигания от окружающей атмосферы избыточным давлением воздуха перед фронтом горящих горелок. [c.322]

    Один рабочий пострадал, так как па нем загорелась спецодежда. Блок, разделения воздуха был остановлен на ре.чонт. После остановки блока никаких, неисправностей осмотром не было обнаружено. О сливе жидкого кислорода были предупреждены все цеховые службы, в цехе и на территории были выставлены посты. После этого начали быстрый слив жидкого кислорода. Однако в районе расположения блока все же оказался посторонний человек, на котором вспыхнула одежда. От его горящей одежды воспламенилась входная дверь,, через которую этот человек бежал в душевую. Дверь воспламенилась потому, что в этой зоне содержание кислорода было повышенным. [c.381]

    Пожар возник через полчаса после быстрого слива от горящей лапиросы рабочего, проходившего вблизи блока разделения. [c.382]


Смотреть страницы где упоминается термин Горяев: [c.153]    [c.306]    [c.146]    [c.175]    [c.161]    [c.322]    [c.186]   
Химики (1984) -- [ c.0 ]

Радиационная химия полимеров (1966) -- [ c.171 ]

Химическая литература и пользование ею Издание 2 (1967) -- [ c.184 , c.186 ]

Химическая литература и пользование ею (1964) -- [ c.184 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1967-1972) Ч 1 (1974) -- [ c.0 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 1 (1969) -- [ c.0 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1961-1966) Ч 2 (1969) -- [ c.0 ]

Газовая хроматография - Библиографический указатель отечественной и зарубежной литературы (1967-1972) Ч 1 (1977) -- [ c.0 ]

Гетерогенный катализ в органической химии (1962) -- [ c.0 ]

Методы элементоорганической химии Хлор алифатические соединения (1973) -- [ c.331 , c.340 , c.431 ]

Выдающиеся химики мира Биографический справочник (1991) -- [ c.0 ]

Выдающиеся химики мира (1991) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте