Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Идентификация ароматических углеводородов

    ИДЕНТИФИКАЦИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ [c.228]

    Идентификацию ароматических углеводородов осуществляют с помощью реакций замещения в ядре или окислением боковых цепей. Иногда удается также получить пикраты. [c.320]

    Количественное определение, выделение и идентификация ароматических углеводородов [c.74]

    Ароматические углеводороды образуют довольно стойкие продукты присоединения с 1,3,5-тринитробензолом, пикриновой кислотой и некоторыми другими веществами. Эти продукты присоединения в больщинстве случаев имеют достаточно четкие температуры плавления и могут быть использованы для идентификации ароматических углеводородов. [c.233]


    Исследованиями в этой малоизученной, но многообещающей области было установлено, что ароматические углеводороды и эфиры реагируют с фенилизоцианатом в присутствии хлористого алюминия с образованием амидов [5] этот метод был с успехом применен одним из авторов этой книги для идентификации ароматических углеводородов. [c.411]

    При исследовании индивидуального и структурно-группового состава ароматических фракций нефти, а также продуктов нефтехимического синтеза, содержащих ароматические и ненасыщенные соединения, важное значение имеет использование электронных спектров поглощения в ближней ультрафиолетовой области. Ультрафиолетовые спектры поглощения широко применяются также для идентификации индивидуальных ароматических углеводородов. Идентификация ароматических углеводородов по ультрафиолетовым спектрам поглощения, если спектры обладают четко выраженной структурой, более надежна и однозначна, чем идентификация по физико-химическим характеристикам. Абсорбционная спектроскопия в ближней ультрафиолетовой области спектра обладает рядом существенных преимуществ и перед чисто химическими методами идентификации. [c.3]

    Произведена идентификация ароматических углеводородов по ультрафиолетовым спектрам поглощения на спектро- [c.26]

    Ароматические углеводороды, отделенные в виде сульфокислот, могут быть выделены разложением последних перегонкой с перегретым водяным паром при 150—170° С [1]. Разложение сульфокислот используют для идентификации ароматических углеводородов топлив. Предельные углеводороды топлива, оставшиеся после сульфирования, перед дальнейшим анализом промывают для удаления следов кислоты и высушивают. [c.201]

    Из других химических методов идентификации ароматических углеводородов (бензина) следует отметить окисление алкилароматических углеводородов в умеренных условиях водным раствором перманганата калия с последующим определением строения полученных кислот (по температурам плавления) [7]. Так, бензойная кислота (темн. пл. 121—122° С) указывает на наличие в бензине этилбензола, фталевая (темп. пл. 231° С) — о-ксилола, изофталевая (темп. пл. 231° С) — л-ксилола, а терефталевая (сублимация без плавления) — п-ксилола. [c.202]

    Работа велась в двух направлениях 1) контроль полноты хроматографического отделения углеводородной части фракций от кислородсодержащих соединений 2) идентификация ароматических углеводородов в узких хроматографических фракциях. [c.145]


    С ароматическими углеводородами пикриновая кислота дает комплексные соединения, которые хорошо кристаллизуются и используются для выделения и идентификации ароматических углеводородов. [c.399]

    Вторая глава посвящена применению ЭВМ для идентификации и качественного анализа определение структуры неизвестного соединения с использованием больших каталогов масс-спектров методами распознавания образов и эвристического программирования. Рассмотрены алгоритмы построения структур возможных изомеров по заданной брутто-формуле, применяющиеся в эвристическом программировании. Машинные методы качественного анализа сочетаются с различными приемами масс-спектрометрии высокого разрешения и активирующих столкновений. Возможности структурной идентификации ароматических углеводородов и некоторых типов гетероатомных соединений существенно расширились благодаря работам в области масс-спектрометрии отрицательных ионов. Описание этих методов еще не вошедших в повседневную аналитическую практику,, также дано во второй главе. [c.6]

Рис. 4.3. Схемы индивидуальной идентификации ароматических углеводородов СдН,2 и Рис. 4.3. <a href="/info/892997">Схемы индивидуальной</a> <a href="/info/467621">идентификации ароматических</a> углеводородов СдН,2 и
    Идентификация ароматических углеводородов бензина имеет, кроме теоретического, также большой практический интерес. Как известно, антидетонационные свойства бензинов в значительной степснп зависят от присутствия ароматических углеводородов. Отдельные представители ароматических углеводородов, с точки зрения антидетонациоиных свойств бензина, имеют разное значение. Так, например, этилбензол, кроме высокого октанового числа, характеризуется хорошей восприимчивостью к тетраэтилсвинцу поэтому, несмотря на небольшое содержание ароматических углеводородов в большинстве нефтей, их идентификация является актуальным вопросом химии нефти. [c.14]

    Идентификация ароматических углеводородов, входящих в состав тяжелых фракций нефтей связана с больши.ми экспериментальными затруднениями, поэтому эти углеводороды мало изучены. [c.28]

    С целью идентификации ароматических углеводородов, выделенных из фракции 122—150°С, углеводородняя смесь с температурой кипения 135—144 С 1° 0,8656 1,4976  [c.47]

    Для идентификации ароматических углеводородов, содержащихся в указанных узких фракциях, мы применили спектры комбинационного рассеяния, ясно представляя себе трудности определения в высококипящей ароматике индивидуальных представителей, ио считая возможным более или 54 [c.54]

    Для идентификации ароматического углеводорода, входящего в состав фракции 165—170°, фракция нитровалась. Судя по температуре кипения фракции она должна содержать псевдокумол с т. кип, 169°. Нитрованием фракции 165— 170 получен нитропродукт, который после перекристаллизации из бензола плавился при 179—180°, что указывает на присутствие тринитропсевдокумола в продуктах нитрования и псевдокумола в исследуемой нефти. [c.59]

    Для идентификации ароматических углеводородов, полученных дегидрогенизацией гидроароматических углеводородов, они окислялись слабым раствором псрмаигаиата 1 алия по Ульману [12]. [c.63]

    В некоторых случаях непредельные углеводороды идентифицируют в виде дибромпроизводных. Для идентификации ароматических углеводородов окисляют их боковые цепи и исследуют образовавшиеся карбоновые кислоты. Многие ароматические углеводороды исследуют в виде характерных кристаллических производных пикриновой кислоты. К шестичленным нафтенам применяют реакцию пербромирования по Густавсону — Коновалову, а ко всем насыщенным —нитрование по Коновалову разбавленной кислотой в запаянных трубках. [c.90]

    Из масляных франций нефти пока не удалось выделить и идентифицировать индивидуальные углеводороды ароматического ряда. Более полно изучены ароматические углеводороды нефтяных фракций, выкипающих до 360 °С. Так, для выделения и идентификации ароматических углеводородов, содержащихся в этих фракциях, С. С. Наметкиным и его учениками была иопользована способность нафталина и его гомологов образовывать кристалличгс- [c.14]

    На основании имеющихся в литературе спектров индивидуальных ароматических углеводородов была проведена качественная идентификация ароматических углеводородов в узких фракциях арланской нефти. Максимумы 2665 и 2748 А (см. табл. 2) в электронном neKtpe поглощения фракции № 1 (160—170°С) соответствуют трехзамещенным алкилбензолам типа 1, 2, 4. Плечо 2620—2630 А соответствует дизамещенным алкилбензолам типа 1,2 1,3. [c.34]

    В инфракрасной же области инданы имеют очень характерные полосы частотой 738—752 см . Поэтому инданы в области этих фракций идентифицировали по инфракрасным спектрам и по аномально высокой интенсивности полос поглощения в электронном спектре. По колебательным спектрам в инфракрасной области проведена детальная идентификация ароматических углеводородов в каждой фракции. Результаты анализа приведены в табл. 3. [c.36]


    Инфракрасные спектры поглощения. Любое соединение в той или иной степени поглощает падающие на него инфракрасные лучи в определенной области длин волн. Это проявляется в виде полос поглощения в инфракрасном спектре данного соединения. В зависимости от сложности молекул число полос поглощения колеблется от 2—3 до нескольких десятков. Полосы поглощения определяют молекулу в целом, а некоторые из них характерны для отдельных атомных группировок н структурных особенностей молекулы (например, для групп СНг, (]Нз, двойной связи). Спектр смесей представляет собой наложение спектров отдельных соединений. Следовательно, изучая инфракрасные спектры поглощения, можно качественно расшифровать состав углеводородной смеои, а по интенсивности полос в отдельных случаях определять и количественный состав последней. Идентификация ароматических углеводородов хорошо проводится также и по спектрам поглощения в ультрафиолетовой части спектра. [c.62]

    Для характеристики и идентификации ароматических углеводородов можно пользоваться конденсацией их с фталевым или тетрахлорфталевым ангидридом в растворе сероуглерода и в присутствии хлористого алюминия. Получающиеся о-ароилбензой-ные кислоты имеют резкие температуры плавления, распределенные в значительном интервале, при дегидратации они. превращаются в производные антрахинона Ред.]. [c.84]

    Целью данной работы является изучение возможности проведения анализа нефти (идентификация ароматических углеводородов) по электронно-колебательным спектрам поглощения в ультрафиолетовой области е использованием нейтральных растворителей и низких темперлтур. [c.10]

    Выделение и идентификация ароматических углеводородов основаны на способности этих углеводородов вступать в разнообразные химические реакции, селективно растворяться в ряде растворителей и давать кристаллические производные со многими органическими веществами. Наиболее распространенным реагентом на ароматические углеводороды является концентрированная серная кислота. Если обрабатывать фракцию, лишенную непредельных углеводородов, 100%-ной Н2304, то ароматические углеводороды образуют сульфокислоты и перейдут в серпокислотный слой. При дальнейшей перегонке с паром сернокислотной вытяжки, разбавленной водой, сульфокислоты разлагаются с регенерацией серной кислоты и ароматического углеводорода. [c.135]

    Почти одновременно с рефрактометрическим методом установления строения органических соединений был разработан первый из спектроскопических методов в 1878 г. начались работы Хартли в области УФ-спектроскопии органических соединений. Эти работы подробно были рассмотрены в главе XIII, и здесь ограничимся лишь напоминанием о том, что уже в первых работах Хартли было указано на возможность применения УФ-спектров для идентификации ароматических углеводородов и их производных, что этот метод оказался особенно удобным при изучении таутомеров и что, например, этим методом было установлено (1899) строение изатина. В 1881 г. Эбни и Фестинг указали на возможности ИК-спектроскопии для установления присутствия в органических соединениях функциональ- ных групп. [c.303]

    Рассмотрим возможность идентификации ароматических углеводородов в гипотетической смеси (рис. 11.12), состоящей из н-углеводородов, ароматических углеводородов, спиртов, кетонов и алкилйодидов, растворенных в воде. После извлечения ЛОС из воды экстракцией органическим растворителем (см. анализ нефтепродуктов в разд. 1) и отделения полярных соединений (спирты, кетоны, алкилйодиды) методом жидкостной хроматографии на колонке с оксидом алюминия в анализируемой смеси останутся лишь н-углеводороды и алкилбензолы. Полученный экстракт хроматографируют одновременно на двух колонках с НЖФ разной полярности, причем в качестве неполярных НЖФ обычно применяют сквалан или неполярные силиконы, а в качестве полярных — полярные силиконы, полиэтиленгликоли или эфиры на основе циановодородной кислоты. [c.75]

    Интересным вариантом реакций вычитания является использование в качестве реагента селективных неподвижных жидких фаз, избирательно удерживающих ЛОС различных классов. Так, для идентификации ароматических углеводородов в смеси с н-парафинами и н-олефинами можно использовать реактор с М,Н-бис(2-цианэтил)формамидом на твердом носителе. Неполярные парафиновые углеводороды элюируются из колонки с суперполярной НЖФ такого типа сразу же после ввода пробы, а ароматические углеводороды удерживаются очень сильно и выходят из хроматографической колонки гораздо позднее — бензол появляется на хроматограмме после н-додекана (см. табл. 111.16 и рис. У.14). После этого индивидуальная идентификация алкилбензолов по величинам удерживания не представляет труда, а ее информативность (см. главу I) составляет 85—90%. [c.221]

    Другим приемом идентификации с помощью ФИД является использование отношения сигналов ФИД/ПИД и ФИД с другими детекторами. Эта техника была впервые реализована Дрисколом с сотр. [40] для идентификации ароматических углеводородов, парафинов и олефинов в природном газе, используемом в качестве сырья для нефтехимии. Этот способ групповой идентификации ароматических и алифатических углеводородов оказался полезным при исследовании продуктов газификации каменного угля [41] и расшифровке состава бензинов [42]. Результаты идентификации, основанные на измерении отношения сигналов ФИД/ПИД для 21 соединения, были получены после хроматографирования ЛОС на капиллярной колонке со скваланом длиной 100 м. [c.406]

    В этих условиях для надежной идентификации алкилбензолов можно использовать метод РСК, с помощью которого уже в процессе пробоотбора удаляются в форколонке примеси полярньгх ЛОС ( альдегиды, кетоны и спирты), мешающие надежной идентификации ароматических углеводородов [81, 82]. Для этой цели пригодны традиционные реагенты, применяемые в хемосорбции (см. главу П1) и в методиках вычитания (гидроксиламин и [c.514]

    Исследования А.мериканского нефтяного института [29,30] и Бюро рудников США, выполненные за последние 20 лет, значительно пополнили наши сведения о составных частях минеральных масел. Работа Кинни, Смита и Болла [31] явилась большим вкладом в дело подробного изучения гомологов тиофена, содержащихся в сланцевом масле. Кинни и Кук [32] описали метод идентификации ароматических углеводородов и гомологов тиофена, в котором для распознавания структурных группировок в неизученных ранее соединениях использована масс-спектрография. Авторы отмечают, что прежде применение масс-спектров в целях качественной идентификации неописанных соединений обычно ограничивалось необходимостью сравнивать их спектры со спектрами известных образцов. Они пишут Для идентификации неописанных соединений не требуется предварительных масс-спектрографических данных . Основные соотношения, на которых базируется идентификация не изученных ранее соединений, могут быть выяснены из рассмотрения масс-спектров соответствующим образом подобранных гомологов бензола и тиофена. Масс-спектрографические данные по тиофену и его гомологам приведены в монографии Хартафа [33]. [c.108]

    Как видно из рис. 2, различные полиметилзамещенные производные бензола группируются вокруг разных прямых, что применялось для идентификации ароматических углеводородов. [c.73]


Смотреть страницы где упоминается термин Идентификация ароматических углеводородов: [c.59]    [c.76]    [c.48]    [c.231]    [c.75]   
Смотреть главы в:

Химия нефти -> Идентификация ароматических углеводородов


Масс-спектрометрия в органической химии (1972) -- [ c.282 ]




ПОИСК







© 2025 chem21.info Реклама на сайте