Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торможение реакций

    Несмотря на различный механизм превращения парафиновых углеводородов на всех рассмотренных катализаторах, для них наблюдается общность кинетических закономерностей и торможение реакции изомеризации парафиновых углеводородов избытком водорода. Для всех катализаторов зависимость скорости реакции от парциального давления водорода носит экстремальный характер после достижения определенной концентрации водорода на поверхности катализатора. Величина и положение максимума зависят от типа катализатора, температуры и молекулярной массы парафинового углеводорода. [c.35]


    Что касается самого факта торможения реакции изомеризации и-пен-тана водородом, то в соответствии с установившимся в настоящее время взглядом на механизм реакции изомеризации н-парафиновых углеводородов на бифункциональных катализаторах, реакция протекает через стадию дегидрирования парафинового углеводорода с образованием оле-финового углеводорода. Следуя этой схеме, торможение реакции водородом можно объяснить снижением концентрации олефина вследствие гидрирования его в парафиновый углеводород, а также явлениями адсорбционного вытеснения пентана водородом с поверхности катализатора. [c.23]

    Ниэкомолекулярные нафтены, особенно циклогексан, подавляют крекинг, если присутствуют в концентрациях 5—10% объемн. Нафтены больщего молекулярного веса заметно менее активны. Ароматические углеводороды необходимо брать для подавления крекинга в значительно меньших концентрациях. Повышение концентрации ароматических углеводородов тормозит общий процесс. Наибольшую активность в торможении реакции проявляет толуол. [c.520]

    Было найдено [21]. что давление водорода имеет большое значение. Сравнительные опыты при 100° показали, что минимальное эффективное давление находится в пределах 9—14 ат. При давлениях ниже минимального преимущественно получаются бутаны, тогда как выше этого давления наблюдалась тенденция к торможению реакции изомеризации. Минимальное требуемое давление выше при более высоких температурах или при использовании более активного катализатора. [c.23]

    Ввиду исключительной легкости гидрогенизации этилена (он может гидрогенизироваться уже при—89° [51]) было высказано предположение, что для задержки реакции на стадии этилена необходимо применять относительно неактивный катализатор. Сравнительно малоактивные катализаторы нужного качества приготовлялись двумя путями 1) сильным разбавлением активных катализаторов такими инертными носителями, как силикагель или кизельгур (в отношении от 100 1 до 1000 1), и 2) частичным отравлением (отравление палладия ртутью или свинцом, отравление никеля серой или селеном). Присутствие разбавляющего пара также способствует избирательной гидрогенизации ацетилена в этилен благодаря торможению реакции гидрополимеризации ацетилена в более высокомолекулярные углеводороды. [c.240]

    На основании результатов, полученных при изучении влияния парциального давления водорода и -пентана, можно предположить, что изменение рабочего давления в пределах 1,5-10,0 МПа не должно отражаться на скорости реакции при условии сохранения парциального давления н-пентана не выше 1,0 МПа. При дальнейшем повышении парциального давления н-пентана увеличение рабочего давления должно приводить к торможению реакции изомеризации. Результаты опытов (табл. 1.6) подтверждают эти предположения. При повышении рабочего давления от 4,0 до 10,0 МПа, сохранении мольного отношения водород к-пентан= 19 и изменении парциального давления н-пентана от 0,2 до 0,5 МПа глубина изомеризации н-пентана не изменялась. Соответственно, и константа скорости реакции осталась постоянной. При повышении рабочего давления в тех же пределах, но при мольном соотношении водород н-пентан = 3 и изменении парциального давления к-пентана от 1,0 до 2,5 МПа константа скорости реакции изменялась от 0,46 до 0,26. [c.22]


    Эта реакция приводит к обрыву цепей и торможению реакций распада, что снижает скорость реакции в целом в десятки раз. [c.204]

    Уменьшение размера частиц катализатора увеличивает скорость внешней диффузии и снижает внутридиффузионное торможение реакции для данных скорости реакции и условий ее проведения уменьшение размера частиц катализатора до некоторой величины в принципе всегда может обеспечить протекание реакции в кинетической области. Увеличение скорости потока в проточной системе (или перемешивание в статической) увеличивает скорость внешней диффузии, что способствует переходу реакции в область внутренней диффузии. [c.152]

    Влияние добавок ДЭГ на скорость каталитической реакции имеет сложный характер. При добавлении небольших количеств ДЭГ (менее 0,1 моль/л) наблюдается торможение реакции, а затем происходит резкое ее ускорение и при концентрации 0,106 моль/л константа скорости имеет свое максимальное значение, равное 106,1 10 V. При добавлении новой порции полярного растворителя происходит плавное торможение реакции. [c.54]

    Подобная сложная зависимость с первоначальным торможением, резким ускорением и последующим плавным торможением реакции повторяется и при большей концентрации ДЭГ. Экстремальное значение скорости реакции наблюдается при концентрации ДЭГ 0,42 моль/л. [c.54]

    В промышленных условиях эта реакция осуществляется в контактных аппаратах, представляющих собой многослойный каталитический реактор с встроенными между слоями и выносными теплообменниками, предназначенными для отвода реакционного тепла. Основное применение в сернокислотной промышленности получили схемы контактных узлов, работающих по методу одинарного (одностадийного) контактирования (рис. 23) и по методу двойного контактирования и двойной абсорбции (рис. 24). Последний метод предполагает организацию двухстадийного контактирования. На рис. 24 представлена схема (3+ 1), первая стадия которой включает первые три слоя катализатора, а вторая — последний слой в реакторе. Каждая из стадий контактирования завершается абсорбцией 50з. Разделение процесса окисления на две стадии с последующей абсорбцией ЗОз способствует увеличению скорости реакции (IV,73) на заключительной (второй) стадии вследствие значительного снижения эффекта торможения реакции продуктом ЗОз.что позволяет достичь более высокой степени превращения ЗОг в 50з по сравнению с получаемой при одностадийных схемах контактирования. [c.141]

    Из определения параметра Н легко видеть, что наиболее опасным местом, где следует проверять неравенство Н < является вход реактора. В дальнейшем, по мере уменьшения концентрации исходного вещества, величина Я монотонно уменьшается (если только не считать случаев автокатализа и торможения реакции исходным веществом). Согласно сказанному выше, при Н > (на входе реактора) должны наблюдаться температурные пики в лобовом слое (явление практически весьма распространенное). Вопрос о том, приведет ли образование пика к переходу процесса в диффузионный режим, зависит от того, будет ли точка зажигания реакции достигнута раньше, чем начнет выполняться неравенство Я С Я . [c.256]

    Здесь X — продольная координата Г[ — скорость образования -го вещества — скорость тепловыделения в единице объема реактора 7 — теплоемкость единицы объема реагирующей смеси q — скорость теплоотвода от единицы объема реакционной зоны, зависящая от температуры в зоне реакции Т и температуры теплоносителя Т . Выражение для скорости г должно учитывать диффузионное торможение реакций на отдельном зерне [см. формулу (VII.49)]. [c.283]

    Роль концентрации в активной фазе здесь играет двухмерная концентрация молекул, сорбированных на активной поверхности Внутридиффузионное торможение реакции здесь не учитывается. Как и в кипящем слое, перенос вещества движущимися твердыми частицами не играет роли, если реакция протекает во внешнедиффузионной области или если частицы катализатора обладают малой удельной поверхностью, плохо сорбирующей реагент. В кинетической области устанавливается сорбционное равновесие между фазами Ср = Скат// складывая (Л И.149) и ( 11.150), приходим в этом случае к уравнению [c.319]

    Созданы и широко применяются процессы, в которых осуществляется максимальное торможение реакций гидрирования при интенсивном ускорении реакций гидрогенолиза. К ним относятся в первую очередь промышленные процессы гидродеалкилирования гомологов бензола и нафталина .  [c.96]

    Кинетика гидроочистки реальных промышленных видов сырья весьма сложна. Сложность определяется различием в скоростях превращения различных классов сернистых соединений (иногда на порядок и больше), а также изменением активности катализатора в ходе процесса (см. стр. 282,291). Кроме того, всегда, особенно в случае тяжелых продуктов, приходится считаться с большой вероятностью диффузионных ограничений. Наконец, явления торможения реакции сероводородом, отмеченные при гидрогенолизе индивидуальных соединений з1-з5 наблюдаются и в условиях промышленного процесса Несмотря на все перечисленные трудности было выведено много кинетических уравнений для расчета скоростей гидроочистки. [c.296]


    Здесь не принята во внимание рекомбинация атомов подорода вследствие их сравнительно малой копцеитрации, обусловленной высокой их активностью. Однако тормозящее влияние различных посторонних примесей — отрицательных катализаторов (см. [486, с. 307—3101) — приводит к заключению о необходимости введения в механизм реакции процессов, связанных с взаимодействием атомов водорода и хлора с молекулами примесей и обусловливающих обрыв цепей. Такими процессами прн торможении реакции молекулярным кислородом являются процессы И f 0,-[-М = Н0.2 - -М [c.202]

    Механизм процесса включает промежуточные стадии замещения хлор-анионов в координационной сфере палладиевого комплекса молекулами олефина и воды (этим вызвано замедляющее влияние больших концентраций хлор-анионов). Координационный комплекс хлористого палладия с олефином и водой обратимо отщепляет протон, чем объясняется торможение реакции при значительных концентрациях ионов водорода. Дальнейшая реакция протекает внутри образовавшегося нового комплекса, причем гидроксильный ион атакует один из ненасыщенных углеродных атомов олефина с одновременной миграцией гидрид-иона к соседнему атому С -I выделением металлического палладия. Все изложенное для [c.447]

    Это означает, что скорость изомеризации н-гексана не зависит от общего давления при постоянном молярном отношении водород углеводород. Независимость скорости-изомеризации от общего давления была также установлена при изучении каталитического риформинга гексанов [781 и н-гептана [17 1. Однако по данным [581, увеличение Рн, практически не вызывает торможения реакции изомеризации н-гептана, что не согласуется с результатами работы [481. [c.39]

    Катализаторы паровой конверсии углеводородов предназначены не только для ускорения основной реакции, но и для подавления побочных реакций пиролиза. К побочным, крайне нежелательным реакциям, следует отнести и расщепление углеводородов с выделением углерода на катализаторе. Этим реакциям противостоит газификация углерода водяным паром. Катализаторы должны предотвратить выпадение углерода торможением реакций его образования пли же ускорением реакции газификации углерода водяным паром. [c.79]

    Значительно больший интерес представляет возможность перехода к пассивному состоянию за счет пли блокировки активных центров, или электрохимического торможения реакции растворения. Вследствие энергетической неоднородности поверхности растворяющегося металла переход его иочов в раствор с различных участков совершается с неодинаковой легкостью. Если какое-то число атомов или молекул кислорода (недостаточное для того, чтобы полностью закрыть поверхность) окажется адсорбированным на участках, где растворение может совершаться наиболее легко, то это приведет к резкому падению общей скорости растворения, неэквивалентному доле занятой поверхности. Торможение процесса растворения повысит поляризацию, т. е, сместит потенциал анода в положительную сторону. Такое смещение потенциала будет спо- [c.483]

    Если механизмы обеих реакций (изо иеризации и диспропорцио-нирования) протекают с промежуточным образованием иона карбония, то можно ожидать, что снижение концентрации иона карбония снизит скорость и степень обеих реакций действительно, это согласуется с наблюдениями. Однако в то время как реакция изомеризации строго подчиняется уравнению реакции первого порядка [21], есть основания предполагать, что лимитирующая стадия реакции диспропорционирования пентана — реакция более высокого порядка, протекающая, например, как реакция бимолекулярная по уравнению (17). Таким различием порядков реакции легко можно объяснить более сильное торможение реакции диспропорционирования. [c.28]

    Инертные растворители обычно замедляют скорость присоединения, хотя ледяная уксусная кислота часто применяется в качестве растворителя, так как в пей очень хорошо растворяются хлористый и бромистый водород. Эфир и диоксан, по-видимому, образуют оксонпевые комплексы, на что указывает сильное торможение реакции хлористого водорода с гексеном-3 и циклогексеном в этих растворителях [66]. [c.370]

    Образцы платинированного алюмосиликата, в которые вводились различные количества железа (в виде р02Оз), были испытаны в реакции изомеризации н-гексана (рис. 1.9). Активность катализатора при увеличении содержания Рб2 0з в 15 раз снижалась лишь в 2,4 раза. То обстоятельство, что резкое изменение дегидрирующей активности катализатора обуславливает лишь относительно небольшое уменьшение глубины изомеризации, подтверждается опытами, проведенныл-ш на образцах катализатора, в которых массовая доля платины изменялась от 0,025 до 1%, т. е. в 40 раз. При этом константа скорости реакции изомеризации н-гек-сана возросла лишь в два раза (рис. 1.10). Общность кинетических закономерностей для paзJШЧныx катализаторов [на всех катализаторах наблюдается первый порядок реакции по углеводороду и торможение реакции избытком водорода (табл. 1.5) ] также указывает на то, что лимитирующей является стадия, протекающая на кислотных центрах носителя. [c.18]

    Таким образом, кинетические закономерности реакции изомеризации н-пентана на Ft - AI2O3 - F и Pt - AI2O3 - l, Ft - НМ и Pd - aY сходны между собой во всех случаях наблюдается первый Порядок реакции по нормальному парафиновому углеводороду и торможение реакции избытком водорода. [c.28]

    Наличие в составе алюмосиликатных катализаторов 3—5 % щелочноземельных металлов (Са, Mg), а также небольших количеств по-видимому, не влияет на каталитические свойства алюмосиликата. Триоксид лгелеза в совокупности с А1зОа и 310.2 может усиливать катализ реакций дегидрогенизации. Искусственное введение в состав алюмосиликатных катализаторов кислородных соединений бора, марганца, тория, циркония и т. д., рекомендуемое многими патентами, вероятно, связано с повышением термической устойчивости катализатора или с понижением его обуглероживаемости за счет каталитического торможения реакций глубокого распада углеводородов либо, наконец, со смягчением окислительных процессов на поверхности катализатора при его регенерации горячим воздухом. [c.58]

    При использовании системы твердый КМ.ПО4 или ЫаМпО / /краун [911] необходимо тонкое измельчение окислителя и высокоэффективное перемешивание, чтобы предотвратить торможение реакции образующимся МпОг. Некоторые авторы предлагают проводить реакцию в шаровой мельнице. [c.383]

    Низкое значение наблюдаемой энергии активации, а также снижение ее нри повышении температуры дают основания предположить возможность диффузионного торможения реакции каталитического крекинга тяжелых газойлей. Исследования [30] влияния структуры внутренней поверхности катализатора и величины его внешней поверхности на скорость процесса подтвердили это предположение. Было найдено, что каталитический крекинг тяжелого газо11ля при температурах 460 — 490 °С протекает в области, переходной между внутренней и внешней диффузионными областями. [c.166]

    В табл. 4.3 приведены сводные данные о влиянии области протекания реакции на ее кинетические параметры. Рассмотрим, как изменяется область протекания реакции с изменением условий ее проведения. Изменение температуры в наибольшей степени влияет на скорость реакции, проходящей в кинетической области, в значительно меньшей степени — при протекании реакции во внутридиффузионной области и практически не влияет на скорость реакции, если она протекает во внешнедиф-фузиоиной области. С повышением температуры реакция, протекающая во внутренней кинетической области, в результате возрастания константы скорости начинает тормозиться диффузией в порах и переходит во внутридиффузионную область. При дальнейшем повышении температуры продолжение возрастания константы скорости приводит к торможению реакции внешней диффузией, и реакция переходит во внешнедиффузионную область. Далее повышение температуры на скорость реакции влияния практически не оказывает. На рис. 4.2 приведена зависимость константы скорости реакции первого порядка на пористом катализаторе от температуры. На непористом катализаторе осуществляются только два режима— внешнекинетический и внешнедиффузионный. Если во внутренней кинетической области реакция протекает по первому порядку, то влияние [c.151]

    Введение в состав алюмосиликатного катализатора кислородных соединений бора, марганца, тория и т. д., возможно, вызывает повышение термической устойчивости синтетических алюмосиликатов либо торможение реакций глубокого распада углеводородов (уменьшение коксообразования), либо смягчение окислительных процессов на поверхности катализатора прн ре-Фмерации.  [c.11]

    При проведении процесса на каталитических системах из твердого катализатора (С02О3) и ингибитора — твердого (А12О3) или растворимого (гидрохинона) — за счет торможения реакции радика-лообразования селективность процесса резко увеличивается [97, 981. [c.48]

    Дополнительным доказательством в пользу радикально-ценного механизма процесса явилось торможение реакции при добавке окиси азота Представления о радикальном механизме имеют, по-видимому, общий характер. С их помощью, например, легко понять результат одной из ранних работ Холла который из гидрогенизата нафтолов выделил ди-Р-нафтиловый эфир, оба динафтиленоксида и Р-динафтил (см. реакции 7, 8 на стр. 197). [c.198]

    Прн втором направлений эф<()ектиппость уменьшения коксообразования создается за счет ингибирования окислительных реакций с помощью сероводорода или элементарной серы. Механизм ингибирующего действия сероводорода или серы носит комплексный характер, включая торможение реакций окисления углеводородов и полимеризации, пигибнроват1я окисления ароматических углеводородов, а также пассивацию металлических поверхностей. [c.219]

    В газообразных продуктах деструктивного гидрирования, как и ири каталитическом крекинге, преобладают бутаны, причем половина их приходится па долю пзобутана. В жидких фракциях, однако, содержание разветвленных олефиновых и парафиновых углеводородов, значительно уступает таковому в бензинах каталитического крекинга. Это находит объяснение в том, что здесь имеет место торможение реакций полимеризации олефнноБ и связанных с изомерными превращениями реакций днсиропорционпрования водорода реакциями прямого гидрирования кратнт,1х связей. [c.178]

    Взаимодействие индивидуальных сераорганических соединений с водородом протекает ио первому порядку. Однако для процесса гидроочистки нефтяных фракций лучшее приближение к экспериментальным данным дает кажущийся второй порядок. Изменение порядка реакции, ио-видимому, объясняется постоянным снижением константы скорости реакции пс> мере гидрирования наиболее реакциоииоспособных соединений. При высокой температуре, когда скорость химической реакции резко возрастает, скорость суммарного превращения определяется диффузией сырья в поры катализатора. При этом порядок реакции падает, приближаясь к первому. Для уменьшения внутр адиффузионного торможения реакции ири очистке тяжелых видов сырья рекомендуется использовать катализаторы с размером нор более 10 нм. [c.302]

    Составы на основе галогенуглеводородов. Наибольшее распространение для тушения пожаров получили составы на основе этилбромида (С2Н5ВГ) в сочетании с углекислотой (состав 3,5 ), метиленбромидом (состав 7 ) и тетрафтордибромэта-ном (состав СЖБ ). Огнегасительные концентрации этих составов составляют соответственно 6,7 3 и 4,8% (об.). Применение составов на основе галогенуглеводородов основано на химическом торможении реакции горения, что обусловлено образованием активных радикалов и атомов, реагирующих с промежу-точными продуктами реакции (обрыв цепных реакций горения). Различные конструкции огнетушителей, наполненных огнегасительными составами на основе галогенуглеводородов, применяют для тушения самых различных материалов. Недостаток этих составов — токсичность галогенуглеводородов для некоторых и -них, в том числе этилбромида, характерна высокая коррозионная активность. [c.222]


Смотреть страницы где упоминается термин Торможение реакций: [c.333]    [c.260]    [c.131]    [c.59]    [c.123]    [c.37]    [c.165]    [c.286]    [c.463]    [c.436]    [c.121]    [c.152]    [c.50]    [c.56]    [c.57]   
Химия свободных радикалов (1948) -- [ c.27 , c.149 , c.151 , c.203 , c.215 , c.216 , c.255 , c.256 , c.259 , c.261 , c.308 , c.309 ]




ПОИСК





Смотрите так же термины и статьи:

Торможение



© 2024 chem21.info Реклама на сайте