Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пролин пшеницы

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Аминокислотный состав белковых фракций семян злаков к настоящему времени довольно хорошо изучен. В таблице 10, составленной по данным Е. Иемма (1958), приведены резз льтаты определений содержания аминокислот в некоторых белках, выделенных из семян. Эти данные показывают, что содержание почти всех аминокислот в отдельных белковых фракциях сильно различается. По своему аминокислотному составу особенно отличаются от других белковых фракций проламины. Эта группа белков характеризуется очень высоким содержанием глутаминовой кислоты и амидного азота. В глиадине пшеницы и гордеине ячменя, например, почти половина от общего содержания азота в белках приходится на долю глутаминовой кислоты и амидов. Амидные группы в белках связаны с глутаминовой кислотой, и, таким образом, в проламинах до половины общего количества азота содержится в виде этих комплексов. Проламины характеризуются также высоким содержанием пролина (до 15% в гордеине ячменя) и очень малым количеством серусодержащих аминокислот и основных аминокислот, особенно лизина. [c.355]

    Проламины. Не растворимы в воде. Растворяются в 60—80%-ном спирте. Содержат много пролина. Входят в состав растительных белков (глиадин пшеницы, гордеин ячменя, зеин кукурузы). [c.335]

    При рассмотрении результатов анализа (см. табл. 15) видно, что белки отличаются от других природных макромолекулярных соединений, нанример от целлюлозы или крахмала, большим числом различных единиц, входяш их в состав макромолекул (20 аминокислот вместо только одного моносахарида —глюкозы). Кроме того, белки содержат различные аминокислоты в определенных соотношениях. Некоторые белки содержат большое количество определенных аминокислот так, например, коллаген богат гликоколем, пролином и оксипролином, кератин — цистеином и оксикислотами, глиадин пшеницы — глутаминовой кислотой, а салъмин — белок из спермы рыб — состоит почти исключительно из аргинина и не содержит кислотных групп. [c.424]

    Для извлечения растительных белков пользуются различными растворителями, в зависимости от характера белковых фракций в исследуемом материале. Белки пшеничной, ржаной и ячменной муки хорошо растворяются в 0,2% растворе NaOH и лучше в водно-спиртовом растворе едкого натра (0,2% NaOH в 50—60% этиловом спирте). В раствор переходят альбумин, глобулин, проламин и глютелин. Глютелины хорошо растворяются в щелочи, так как имеют в своем составе большое количество дикарбоновых аминокислот (глютаминовая, аспарагиновая) и обладают кислым характером. Проламины (в частности, глиадпн пшеницы и ржи, гордеин ячменя) не растворяются в воде и солевых растворах, а растворяются только в 50—80% спирте. Проламины содержат большое количество аминокислоты — пролина (отсюда и название проламины) и глютаминовой кислоты. Результаты практической работы фиксируют в форме таблицы. [c.27]


    Проламины растворимы в 60-80 % водном этаноле. Эта группа белков характерна исключительно для семян злаков. Название проламины предложено вследствие образования при их гидролизе значительного количества аминокислоты пролина и аммиачного азота. Проламины найдены в семенах всех исследованных в настоящий момент злаков глиадин в семенах пшеницы и ржи, гордеин в семенах ячменя, зеин в семенах кукурузы, авенин в семенах овса. Следует отметить, что проламины встречаются только в эндосперме злаков, в зародышах зерен они отсутствуют. Проламины в чистом виде получают путем экстрагирования муки в 70 % этиловом спирте с последующей отгонкой спирта в вакууме. [c.40]

    Определения аминокислот белков показали, что отдельные белки резко различаются по составу аминокислот. В некоторых белках отдельные аминокислоты могут отсутствовать или находиться в ничтожном количестве, а других может быть очень много. Например, зеин семян кукурузы не содержит лизина и триптофана, в то же время в нем много глутаминовой кислоты, лейцина, пролина и аланина. В глиадине пшеницы количество глутаминовой кислоты и амидов достигает почти половины общего содержания аминокислот в белке, в белках клубней картофеля много лизина, а в белках листьев ячменя очень мало цистина и т. д. [c.218]

    Гл и а д н н ы (проламины). Эти белки, в отличие от других, растворимы в 70—80%-ном спирте. Они богаты пролином и глутаминовой кислотой. К ним принадлежат глнаднн пшеницы, зеин кукурузы и гордени ячменя. [c.399]

    Проламины и глютелины. Это белки растительного происхождения, отличаются своеобразием аминокислотного состава и физико-химических свойств. Они содержатся в основном в семенах злаков (пшеница, рожь, ячмень и др.), составляя основную массу клейковины. Характерной особенностью проламинов является растворимость в 60—80% водном растворе этанола, в то время как все остальные простые белки в этих условиях обычно выпадают в осадок. Наиболее изучены оризенин (из риса), глюте-нин и глиадин (из пшеницы), зеин (из кукурузы), гордеин (из ячменя) и др. Установлено, что проламины содержат 20—25% глутаминовой кислоты и 10—15% пролина. [c.73]

    У зерна пшеницы белок в эндосперме подразделяют на пять групп [63] альбумины, глобулины, глиадины, глютенины и остаточный белок. Клейковина, важная для процесса хлебопечения, представляет собой обычно смесь глютенинов, глиадинов и остаточного белка. При производстве спирта из зерна эта белковая фракция восстанавливается и в качестве побочного продукта поставляется на предприятия пищевой промышленности. Важные белки эндосперма кукурузы, зеины, родственны глиадинам пшеницы и гордеинам ячменя (табл. 1.1) [82]. Зеины представляют собой небольшие по размеру молекулы с высоким содержанием глютамина, лейцина, аланина и пролина, но с низким содержанием лизина. Некоторые зеины богаты также метионином. Основным резервным белком риса являются глютелины (около 80%), сходные по своим характеристикам с глютенинами пшеницы. В каждой зерновой культуре от растворимости накапливаемых белков зависит количество азотистых веществ в водном экстракте, доступных для метаболизма дрожжей. Хотя большинство зерновых культур, за исключением ячменя, для солодоращения не используются, в производстве спирта из зерна и большинства сортов пива для инициации процесса желатинизации крахмала кукуруза, рис и пшеница подвергаются ферментативной и последующей тепловой обработке. [c.22]

    КО на неферментные белки иногда может приходиться значительная часть общего белка. Так, например, на долю двух запасных глобулинов в клетках семядолей гороха приходится более 80% общего количества белка (гл. 29) другие примеры подобного рода — глиадин пшеницы и гордеин ячменя. Каково же происхождение таких запасных белков Состав глобулинов семядолей гороха не представляет ничего необычного для белков. Может быть, глобулины — ферменты, которые утратили свои активные центры Мутации, приводящие к нарушению активного центра фермента, могут и не препятствовать синтезу ставшего неактивным белка. А если синтез фермента контролировался путем репрессии продуктом катализируемой реакции, то тем в больших количествах могли бы образоваться молекулы фермента, уже не обладающие ферментативной активностью. Однако состав глиадина и гордеина в достаточной мере необычен (40% глутамина и 14% пролина). Поэтому трудно представить, что они также возникли в результате утраты активного центра, но что впоследствии они сильно изменились, превратившись в эффективную форму запаса углерода и азота в легко доступном для растения виде. Оболочки меристематических клеток, а также клеток, выросших в культуре ткани, содержат до 40% общего белка клетг п [c.16]

    Пестициды могут в определенной степени влиять па химический состав растений. Так, ряд хлорорганических инсектицидов увеличивает содержание одних элементов (М, Р, К, Са, Ре, Си, В, А1) в пшенице и бобовых и уменьшает содержание других. Альдрин, линдан стимулируют синтез аминокислот (аргинина, гистидина, лизина, пролина) в пшенице. Подобные изменения могут сказаться и на популяциях насекомых, питающихся этими растениями. Так, инсектициды монокротофос и фосфамидон увеличивают концентрацию азота и фосфора в рисе, и это способствует распространению некоторых вредителей, паразитирующих на рисе. [c.31]


    Данные Фишера получили подтверждение в работах других исследователей. Так П. Левен среди продуктов гидролиза желатина обнаружил глицил-пролин дикетониперазин, ранее синтезированный Фишером. Особого внимания заслуживают работы возглавляемой Т. Б. Осборном коннектикутской школы биохимиков, сыгравшие значительную роль в деле окончательного доказательства аминокислотной природы белков. Т. Осборн и С. Клапп в 1901 г. обнаружили среди продуктов гидролиза глиадина пшеницы пептиды, содержавшие остатки фенилаланина и пролина, который Фишер идентифицировал с синтезированным им 1-пролил-1-фенилаланином [349]. Наконец Фишер и Абдергальден среди продуктов гидролиза фиброина шелка нашли тетрапептид, содержавший остатки двух молекул лейцина и по одному остатку аланина и тирозина [183]. [c.88]

    Проламины и глютелины являются растительными белками. При гидролизе они образуют значительное количество аминокислоты пролина (14%) и глютаминовой кислоты (до 43%). Проламины нерастворимы в воде, растворимы в 70—80-процентноы этиловом спирте, но в абсолютном спирте нерастворимы. Проламины найдены во всех без исключения злаках глиадин — в семенах пшеницы и ржи, гордеин — в семенах ячменя, зеин — в семенах кукурузы и т. д. [c.53]

    Глютелины также являются растительными белками, они нерастворимы в воде, растворах солей и этаноле, но хорошо растворимы в растворах щелочей, очевидно, потому, что содержание аргинина и пролина в них значительно больше, чем в проламинах. Комплекс щелочерастворимых белков семян пшеницы получил название глютерин, риса — оризенин. Гли-адин семян пшеницы в соединении с глютерином образует клейковину, свойства которой в значительной мере определяют технологические качества муки и теста. [c.87]

Рис. 3.12. Автоматический анализ кислотного гидролизата эндосперма пшеницы по Муру и Штейну на колонках дауэкс-50 (при 55 "С). А. Для идентификации оснбвных аминокислот используется короткая колонка (5 > 0,9 см) элюирование проводят при pH 5,28, продолжительность опыта 60 мин. Б. Для разделения нейтральных и кислых аминокислот используется более длинная колонка (55 х 0,9 см) элюирование проводят сначала буфером с pH 3,25, а затем буфером с pH 4,25. В качестве внутреннего стандарта добавлен норлейцин. Оснбвные аминокислоты остаются на колонке. Продолжительность-опыта 180 мин. Элюируемые фракции автоматически обрабатывают нингидрином, после чего измеряют их оптическую плотность при 570 и 4 нм. Регистрация при длине волны 440 нм используется исключительно для идентификации пролина и гидроксипролина (в эндосперме пшеницы они отсутствуют). (С любезного разрешения Е. Т. Mertz, Purdue University.) Рис. 3.12. <a href="/info/169797">Автоматический анализ</a> кислотного гидролизата <a href="/info/132480">эндосперма пшеницы</a> по Муру и Штейну на <a href="/info/1551537">колонках дауэкс</a>-50 (при 55 "С). А. Для идентификации оснбвных аминокислот используется короткая колонка (5 > 0,9 см) элюирование проводят при pH 5,28, продолжительность <a href="/info/333504">опыта</a> 60 мин. Б. Для <a href="/info/1294524">разделения нейтральных</a> и <a href="/info/160035">кислых аминокислот</a> используется более <a href="/info/39444">длинная колонка</a> (55 х 0,9 см) элюирование проводят сначала буфером с pH 3,25, а затем буфером с pH 4,25. В <a href="/info/875447">качестве внутреннего</a> <a href="/info/426404">стандарта добавлен</a> норлейцин. Оснбвные аминокислоты остаются на колонке. Продолжительность-<a href="/info/333504">опыта</a> 180 мин. Элюируемые <a href="/info/14163">фракции автоматически</a> обрабатывают нингидрином, после чего измеряют их <a href="/info/3038">оптическую плотность</a> при 570 и 4 нм. Регистрация при <a href="/info/2957">длине волны</a> 440 нм используется исключительно для идентификации пролина и гидроксипролина (в <a href="/info/132480">эндосперме пшеницы</a> они отсутствуют). (С любезного разрешения Е. Т. Mertz, Purdue University.)

Смотреть страницы где упоминается термин Пролин пшеницы: [c.62]    [c.174]    [c.607]    [c.40]    [c.87]    [c.297]    [c.65]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.349 , c.374 ]




ПОИСК





Смотрите так же термины и статьи:

Пролин

Пшеница

Пшеница содержание оксипролина и пролина



© 2025 chem21.info Реклама на сайте