Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Глутаминовая кислота содержание в белках

    Основная масса больщинства аминокислот проходит в реакциях обмена через стадии превращений в глутаминовую или аспарагиновую кислоты или аланин. Содержание амидов и этих трех аминокислот в белках, особенно в белках растений, обычно не менее 30%, а в некоторых белках, например в глиадине пшеницы, превышает 50% общего количества аминокислот. Кроме того, в процессах обмена эти три аминокислоты могут синтезироваться из других аминокислот. Глутаминовая кислота образуется из пролина, орнитина и гистидина, аланин— из триптофана, цистина, серина и т. д. Количество этих аминокислот, объединяемых системой дикарбоновых аминокислот, также составляет не менее 30% аминокислот, входящих в состав белковых молекул. Таким образом, не менее 60% аминокислот, содержащихся в молекуле белка, составляют глутаминовая и аспарагиновая кислоты, их амиды, аланин и аминокислоты, связанные с ними прямыми переходами в обмене веществ. Кроме того, аминогруппы других аминокислот, например валина, лейцина, изолейцина, глицина, в результате переаминирования могут переходить на кетоглутаровую кислоту и образовывать глутаминовую кислоту. Следовательно, доля азота, подвергающаяся обмену через эту систему, еще более увеличивается. Эти данные также показывают центральную роль дикарбоновых аминокислот в обмене веществ. [c.257]


    Содержание аминокислот и порядок их соединения в разных белках может сильно различаться. Но чаще всего в растительных белках встречается 20 аминокислот аланин, аргинин, аспарагиновая кислота (или аспарагин), валин, гистидин, глицин, глутаминовая кислота (или глутамин), изолейцин, лейцин, лизин, метионин, оксипролин, пролин серин, тирозин, треонин, триптофан, фенилаланин, цистеин и цистин Некоторых из перечисленных аминокислот нет в отдельных раститель ных белках, в некоторых белках содержатся другие аминокислоты не входящие в число перечисленных. Аминокислотный состав опре деляет полноценность белков при использовании их в питании или на корм. [c.430]

    Анализ белков.— Белки обычно гидролизуют кипячением с 20%-ной соляной кислотой или 35%-иой серной кислотой. Щелочной гидролиз сопровождается глубокой рацемизацией и применяется только при определении триптофана и тирозина, чувствительных к минеральным кислотам. Ферментативный гидролиз протекает медленно и, вероятно, не полностью, однако он не осложняется деструкцией лабильных продуктов, образующихся при гидролизе. Если аспарагиновая и глутаминовая кислоты присутствуют в белке в виде амидов, то кислотный гидролиз превращает амидный азот в соответствующие аммонийные соли. Методом Кьельдаля определяют количество общего азота содержание амидного азота устанавливают подщелачиванием аликвотной порции и отгонкой аммиака в отмеренный объем титрованной кислоты. В этом случае количество аммиака соответствует количеству присутствующих в белке амидов дикарбоновых аминокислот. [c.640]

    Гидролиз белков ЗМ /г-толуолсульфокислотой или АМ метан-сульфокислотой [7,8], содержащей 0,2% триптамина, в вакууме при 110°С, в течение 3 суток с хорощим выходом приводит к аминокислотам, включая триптофан, однако углеводы могут мешать. Триптофан можно определять также после щелочного гидролиза, но при этом разрушаются полностью аргинин, цист(е)ин, серин и треонин. Общее содержание амидов, обусловленное наличием аспарагина и глутамина, можно определить после гидролиза 10 М НС1 при 37°С в течение 10 суток и последующего анализа на аммиак с помощью микродиффузионной техники. Раздельное определение аспарагина и глутамина можно провести с помощью предварительной этерификации (метанол-уксусный ангидрид) свободных карбоксильных групп, последующего восстановления (борогидрид лития) образовавшихся сложноэфирных групп и определения аспарагиновой и глутаминовой кислоты после кислотного гидролиза соответственно в виде v-гидрокси-а-аминомасляной кислоты и б-гидрокси-а-аминовалериановой кислоты. Содержание аспарагина и глутамина получают путем вычитания этих величин из содержания аспарагиновой и глутаминовой кислот после полного гидролиза немодифицированного белка. Полный ферментативный гидролиз белков без деструкции аминокислот можно осуществить, используя смешанные конъюгаты Сефарозы с трипсином, химотрипсином, пролидазой и аминопептидазой М [9]  [c.260]


    В состав остаточного азота входит также азот аминокислот и полипептидов. В крови постоянно содержится некоторое количество свободных аминокислот. Часть из них экзогенного происхождения, т.е. попадает в кровь из пищеварительного тракта, другая часть аминокислот образуется в результате распада белков ткани. Почти пятую часть содержащихся в плазме аминокислот составляют глутаминовая кислота и глутамин (табл. 17.2). Содержание свободных аминокислот в сыворотке и плазме крови практически одинаково, но отличается от уровня их в эритроцитах. В норме отношение концентрации азота аминокислот в эритроцитах к со- [c.581]

    Содержание белка в цереброспинальной жидкости незначительно (0,15— 0,40 г/л), причем отношение альбумины/глобулины равно 4 липидов в сотни раз меньше, чем в плазме крови. Возможно, что липиды плазмы крови в цереброспинальной жидкости отсутствуют. Общее содержание низкомолекулярных азотсодержащих веществ, особенно аминокислот, в 2—2,5 раза меньше, чем в крови. В ткани мозга, как отмечалось, количество свободных аминокислот велико и во много раз превышает концентрацию их в крови и тем более в цереброспинальной жидкости. Установлено, что некоторые аминокислоты (например, глутаминовая кислота) почти не проникают через гематоэнцефалический барьер. В то же время амиды аминокислот (в частности, глутамин) легко преодолевают этот барьер. Содержание глюкозы в цереброспинальной жидкости относительно велико (2,50—4,16 ммоль/л), но несколько меньше, чем в крови, причем концентрация глюкозы в спинномозговой жидкости может повышаться или снижаться в зависимости от изменений содержания глюкозы в крови. [c.644]

    Да имеют изоэлектрические точки р1 от 6 до 8 у субъединиц с молекулярной массой свыше 95 000 Да—р1 в пределах 6—7. Одной полосе, выявленной одномерным электрофорезом, могут соответствовать более 12 по-разному заряженных компонентов. Кан и Бушук [111] электрофокусированием субъединиц с молекулярной массой от 68 000 до 134 Да между pH 6 и 8 идентифицировали не менее 20 различных белков. Хольт и др. [92] уточнили гетерогенность зарядов и генетическое происхождение высокомолекулярных субъединиц. Они в большей мере связывали эту гетерогенность с соотношениями глутаминовой кислоты и глутамина в субъединицах, чем с постоянно низким содержанием основных аминокислот, причем баланс во всех случаях явно складывается в пользу глутамина. [c.208]

    С другой стороны, аспарагиновая и особенно глутаминовая кислоты, а также лейцин, изолейцин и пролин обычно находятся в белках семян растений в количествах более 5—8%, и часто общее содержание этих пяти аминокислот составляет 60—70% количества аминокислот в белках растений. [c.218]

    Некоторые белки отличаются своеобразными особенностями аминокислотного состава. Так, например, сальмин, принадлежащий к группе протаминов, характеризуется высоким содержанием аргинина и отсутствием таких распространенных компонентов белков, как глутаминовая кислота и лейцин, хотя в нем присутствуют остатки изолейцина и валина (см. табл. 1). Кератин [c.25]

    Таким образом, изучение содержания отдельных аминокислот у видов рода копеечник позволило обнаружить, что они накапливают в преобладающих количествах аспарагиновую и глутаминовую кислоты, аланин, пролин, фенилаланин, метионин, валин и аспарагин, а также в отдельных органах растений гистидин, глицин, серии, лейцин, изолейцин, аргинин, треонин. Определение содержания свободных аминокислот и аминокислот белка у пяти видов рода копеечник в разные фазы вегетации позволило выявить их изменения в процессе индивидуального развития растения. Общим для всех видов является максимальное содержание [c.56]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]

    Аминокислотный состав белковых фракций семян злаков к настоящему времени довольно хорошо изучен. В таблице 10, составленной по данным Е. Иемма (1958), приведены резз льтаты определений содержания аминокислот в некоторых белках, выделенных из семян. Эти данные показывают, что содержание почти всех аминокислот в отдельных белковых фракциях сильно различается. По своему аминокислотному составу особенно отличаются от других белковых фракций проламины. Эта группа белков характеризуется очень высоким содержанием глутаминовой кислоты и амидного азота. В глиадине пшеницы и гордеине ячменя, например, почти половина от общего содержания азота в белках приходится на долю глутаминовой кислоты и амидов. Амидные группы в белках связаны с глутаминовой кислотой, и, таким образом, в проламинах до половины общего количества азота содержится в виде этих комплексов. Проламины характеризуются также высоким содержанием пролина (до 15% в гордеине ячменя) и очень малым количеством серусодержащих аминокислот и основных аминокислот, особенно лизина. [c.355]


    Единственная установленная функция витамина К — это его связь со свертыванием крови. Как удалось проследить, недостаточность витамина К приводит к понижению содержания протромбина (рис. 6-16), некоторых факторов свертывания крови (факторов VII, IX и X) н одного плазматического белка, функция которого пока еще не установлена. В 1972 г. было обнаружено, что дефектный протромбин, образующийся в печени в отсутствие витамина К, не способен связывать ионы кальция, необходимые для последующего связывания протромбина с фосфолипидами и активации его в тромбин. Основываясь на этих сведениях, удалось локализовать структурные различия между нормальным и дефектным белком в М-концевом участке этого гликопротеида, содержащего 560 остатков . Из триптических гидролизатов нормального и дефектного протромбина были выделены пептиды, различающиеся по электрофоретической подвижности. Тщательный химический анализ в сочетании с изучением ЯМР-спектров показал, что в нормальном протромбине остатки в положениях 7, 8, 15, 17,20, 21, 26, 27, 30 и 33, которые при определении аминокислотной последовательности были все идентифнцнро-ваны как глутаминовая кислота, в действительности являются остатками карбокснглутамата. [c.389]

    Признаком проламинов является высокое содержание глутаминовой кислоты (30 — 45 Ь) и пролина (15%). Они нерастворимы в воде, но растворяются в 50 — 90%-ном этаноле. Вместе с содержащими глутаминовую кислоту (до 45%) глутелинами они чаще всего встречаются в белках зерна. [c.345]

    Определения аминокислот белков показали, что отдельные белки резко различаются по составу аминокислот. В некоторых белках отдельные аминокислоты могут отсутствовать или находиться в ничтожном количестве, а других может быть очень много. Например, зеин семян кукурузы не содержит лизина и триптофана, в то же время в нем много глутаминовой кислоты, лейцина, пролина и аланина. В глиадине пшеницы количество глутаминовой кислоты и амидов достигает почти половины общего содержания аминокислот в белке, в белках клубней картофеля много лизина, а в белках листьев ячменя очень мало цистина и т. д. [c.218]

    Применение всех перечисленных приемов позволило определить природу связи между углеводной и пептидной частью в нескольких гликопротеинах. В настоящее время твердо установлено наличие О-гликозидной связи через оксиаминокислоты (тип Р) для муцинов подчелюстных желез, групповых веществ крови, комплекса гепарина с белком и др. и N-aцил-гликозиламинной связи через аспарагиновую и, вероятно, глутаминовую кислоту (тип Е) для овальбумина, орозомукоида и других гликопротеинов. Знаменательно, что для образования указанных гликопептидных связей необходимо присутствие специфических аминокислот — оксиаминокислот и двухосновных кислот, которые обязательно входят в состав природных гликопротеинов в количествах, иногда значительно превышающих их содержание в обычных белках. [c.573]

    Обычно при определении аминскис ютного состава белка ограничиваются анализом суммарного содержания глутамина и глутаминовой кислоты, аспарагина н аспа- [c.34]

    Глиадин пшеницы отличается высоким содержанием глутаминовой кислоты (40%). Группы СООН остатков глутаминовой кислоты амидифицированы, поэтому глиадин в отличие от глютенина не является кислым белком. [c.446]

    Проламины и глютелины. Глютелины и проламины — растительные белки, нерастворимые в воде и растворимые в сильно разбавленных кислотах и щелочах. Проламины растворимы, кроме того, в 70—80%-ном спирте. Отличаются высоким содержанием пролина или глутаминовой кислоты. К проламинаТй относятся глиадин, горденин, секалин, напаин и другие растительные белки. [c.176]

    Проламины. Растворимые в 60—80%-ном спирте растительные белки. Нерастворимы в воде. Для проламинов характерно высокое содержание глутаминовой кислоты и пролина. Проламины входят в состав семян всех злаков например, глиадин составляет около половины белков пшеничной муки (клейковины), гордеин содержится в ячмене, зеин — в кукурузе. [c.710]

    С химической точки зрения кератин состоит из полипептид-ных цепей, образованных 20 различными аминокислотами, относительное содержание которых меняется при переходе от одного вида кератина к другому. Некоторые разновидности содержат кислые боковые группы (12% которых принадлежат глутаминовой кислоте), другие — аминогруппы (30% из них относятся к лизину), третьи — гидроксилы (10% которых поставляет серии). Но все типы кератина характеризуются наличием значительных количеств серы, что обусловлено присутствием остатков цистина, которые образуют дисульфидные мостики между цепями. Именно они в основном определяют стабильность белков. В довершение всего цепи соединены различными видами связей водородными, ионными и ковалентными. [c.243]

    Укажем только на следующее для точного определения аминокислотного состава белка его нужно подвергнуть гидролизу (в вакуумированной запаянной ампуле с 6н. НС1 при температуре 110°) в течение 22 и 70 час [26]. При этом для глицина, аланина, валина, лейцина, изолейцина, метионина (с внесением поправки на 10%-е расщепление при хроматографии), фенилаланина, гистидина и лизина нужно использовать полученное при анализе содержание аминокислоты (в 22- или 70-часовом опыте). В то время как для аспарагиновой и глутаминовой кислоты, серина, треонина, пролина, тирозина и аргинина, которые частично разрушаются при гидролизе (по реакции 1-го порядка), их содержание рассчитывается путем экстраполяции на нулевое время по формуле [c.149]

    Одновременно со снижением содержания азота при повышенных концентрациях НАМ наблюдается изменение аминокислотного состава белка. Количественное содержание лизина, гистидина, аланина, валина, метионина, изолейцина, тирозина и феналалани-на не изменялось под влиянием химических мутагенов. Содержание аспарагиновой и глутаминовой кислот достоверно снижалось во все годы исследований (таблица). Поскольку аспарагиновая и глутаминовая кислоты являются предшественниками других аминокислот, то снижение их содержания существенно сказывалось на синтезе белка. Содержание треонина, серина, пролина [c.84]

    Среди индивидуальных органических соединений определены органические кислоты (муравьиная, уксусная, фумаровая, щавелевая, молочная, бензойная и др.), жиры, белки, аминокислоты (глицин, аланин, гистидин, аргинин, фенилаланин, тирозин, аспарагиновая и глутаминовая кислоты и др.), углеводы (полисахариды, в частности, полиуроновые кислоты и их производные — полисахара), полифенолы, альдегиды, сложные эфиры, воска, смолы, лигнин и др. Многие из них растворимы в воде и могут образовывать комплексные соединения с ионами металлов. Способность гумусовых веществ к образованию внутрикомплексных соединений (хела-тов) с рядом катионов объясняется наличием в структуре гумуса гидрофильных групп. Наивысшей склонностью к образованию же-лезо-гумусовых комплексов типа хелатов обладают фульвокислоты и близкие к ним по природе гуминовые кислоты иэ. сильноподзолистой почвы, характеризующиеся высоким содержанием гидрофильных групп. [c.25]

    В настоящее время в результате применения новых методов исследования установлено, что в состав белковых молекул входят следующие аминокислоты глицин, аланин, валин, лейцин, изолейцин, серин, треонин, цистин, цистеин, метионин, аспарагиновая кислота, глутаминовая кислота, аргинин, лизин, оксилизин, фенилаланин, тирозин, пролин, оксипролин, гистидин и триптофан. Ввиду того что количество азота этих аминокислот составляет в некоторых исследованных белках более 99 % общего содержания азота, нет оснований предполагать наличие в этих белках заметных количеств каких-нибудь других еще не известных соединений. Эти данные, однако, нельзя обобщать и переносить на другие белки. Об этом свидетельствует хотя бы нахождение таких соединений, как аминоэтанол — в гидролизате грамицидина (см. гл. XV) — и диодтирозин и дибромтирозин — в гидролизате кораллов [59] и спонгина [60]. [c.30]

    Триптофан является незаменимой аминокислотой, содержание ее, особенно в растительных белках, невелико. Но потребность в триптофане значительно меньше, чем в лизине и глутаминовой кислоте. Триптофан в небольших количествах используется в животноводстве, медицине и при различных биохимических исследованиях. Вместе с тем это очень важная аминокислота, она входит в белки и участвует в многочисленных превращениях соединений, имеющих циклическую структуру. Отсутствие этой аминокислоты или нарушение процессов синтеза ее ведет к тяжелым заболеваниям организма. [c.414]

    Изучение индивидуальных аминокислот позволило выявить характер их накопления в растении. Так, для всех видов преобладающими свободными аминокислотами являются пролин, аланин и аспарагин, на которые, приходится 40—60% от всей суммы свободных аминокислот. Кроме того, каждый вид имеет свои особенности в содержании тех или иных аминокислот. Например, у копеечника забытого метионин, валин, фенилаланин составляют 10—15%, у к. Гмелина, к. родственного, к. южносибирского глутаминовая и аспарагиновая кислоты достигают 15—20% от общего количества свободных аминокислот. Из аминокислот белка в значительных количествах, как и в свободном состоянии, содержатся аспарагиновая и глутаминовая кислоты, пролин, фенилаланин, аланин, метионин, валин. При этом у копеечника забытого и к. южносибирского выявлено большое количество глутаминовой кислоты и фенилаланина—до 25% от всей суммы аминокислот белка, у к. родственного, к. Гмелина и к. ферганского— до 23% пролина и глутаминовой кислоты. [c.55]

    В динамике накопления отдельных аминокислот у разных видов остролодочников наблюдаются следующие тенденции. Содержание свободных аминокисло 1 снижается от фазы бутонизации к фазе плодоношения. Особенно ярко это проявляется на содержании серина, глицина, глутаминовой кислоты, аланина, пролина, тирозина. Исключение составляет цистин, количество которого возрастает от начальных фаз развития к конечным (см. табл. 5). Рассматривая аминокислоты, входящие в состав белка, следует отметить следующее. Их качественный состав не зависит ни от вида, нн от органа, ни от фазы развития, ни от места произрастания. В условиях Новосибирска, как и в Юго-Восточном Алтае, в белках были обнаружены следующие аминокислоты цистин, гистидин, лизин, аргинин, аспарагиновая кислота, серин, глицин, глутаминовая кислота, треонин, аланин, пролин, тирозин, триптофан, метионин- -валин, фенилаланин, лейцин+изолейцин, что свидетельствует о постоянстве качественного состава аминокислот белка у представителей рода остролодочник. [c.73]

    В процессе вегетации содержание аминокислот белка листьев снижается от фазы бутонизации к фазе плодоношения, особенно сильное уменьшение наблюдается от фазы цветения до фазы созревания. Такая закономерность наблюдается как в изменении содержания суммы аминокислот, так и количества аспарагиновой кислоты, глицина, глутаминовой кислоты, аланина, пролина, тирозина, лейцинов (табл. 7). [c.75]

    Способность к автолизу определяется количеством растворимого азота, высвобождаемым известной массой дрожжей в течение 48 ч в водно-спиртовой раствор со значением pH 3,5 и температурой 37 °С. Автолиз представляет собой потерю сухой массы дрожжей с уменьшением содержания в этой сухой массе белков и нуклеиновых кислот при наличии внутриклеточной протеолитической активности [31]. Уменьшение содержания аминокислот в клеточных стенках связано с потерей глюкозамина и фосфата под воздействием глюканазы снижается и содержание глюканов в клеточной стенке, но толщина клеточных стенок остается той же, только они становятся более пористыми и рыхлыми [12]. При нагревании до 42 °С в течение 3-72 ч в винах, изготовляемых промышленным способом, возрастает содержание пептидов и аминокислот. Это явление связано с экскрецией и отличается от такого же явления вследствие выдерживания вина на дрожжевом осадке [13]. В ходе вторичного брожения или непосредственно после его завершения содержание растворимого азота (в частности, аминокислот) существенно возрастает и не может служить надежным индикатором автолитической активности. В фазе реактивации, соответствующей перестройке внутриклеточной структуры, происходит высвобождение (особенно из вакуолей) лити-ческих ферментов [31], и при этом из дрожжей высвобождается 30% азота, четверть которого представлена глутаминовой кислотой и аланином [36]. [c.193]


Смотреть страницы где упоминается термин Глутаминовая кислота содержание в белках: [c.83]    [c.259]    [c.168]    [c.204]    [c.148]    [c.31]    [c.293]    [c.247]    [c.342]    [c.196]    [c.64]    [c.73]    [c.24]    [c.113]    [c.115]    [c.215]    [c.108]    [c.114]   
Химия природных соединений (1960) -- [ c.436 , c.483 ]




ПОИСК





Смотрите так же термины и статьи:

Белки содержание

Глутаминовая кислота



© 2025 chem21.info Реклама на сайте