Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты содержание в крови, определение

    Современный способ жизни сопровождается увеличением числа некоторых заболеваний. Упомянем, например, инфаркты, гипертонию, ожирение, кариес зубов и не в последнюю очередь всевозможные аллергические заболевания (чрезмерная чувствительность организма к специфическим внешним раздражителям, называемым аллергенами). Так, для некоторых людей аллергеном может служить пыльца определенных растений, для других — пыль, определенное лекарство и т. д. К числу аллергических заболеваний относятся, например, астма, крапивница, сенной насморк, отеки при укусах насекомых. Для всех этих болезненных состояний характерно повышенное содержание гистамина (вещества, образующегося при декарбоксилировании аминокислоты гистидина) в крови аллергика, что является одним из следствий действия аллергена на организм. [c.313]


    Остаточным азотом крови называют небелковый азот, т. е. азот органических и неорганических соединений, который остается в растворе после осаждения белков крови. В норме содержание остаточного азота равно 0,2—0,4 г/л. Около 50% его приходится на азот мочевины, 25 % — на азот аминокислот, 7,5% — на креатинин и креатин, 0,5% — на аммонийные соли и инди-кан, 13 % остаточного азота приходится на долю остальных азотистых веществ крови, содержание которых в крови варьирует. Как правило, повышение остаточного азота обусловлено нарушением нормальных взаимоотношений между образованием и выведением продуктов азотистого метаболизма из организма. Увеличение концентрации остаточного азота в крови свыше 0,4— 0,5 г/л называется азотемией. Это состояние вызывается задержкой выведения азотистых веществ (вследствие нарушения выделительной способности почек при острых и хронических нефритах) или усиленном их образовании (при заболеваниях печени и сердца). Поэтому определение остаточного азота является важным клиническим тестом. [c.193]

    Новейшими методами (микробиологическими) было произведено определение содержания отдельных аминокислот в плазме крови человека [c.443]

    Количественное определение свободных аминных групп аминокислот, полипептидов и белков широко применяется для исследования ферментативного распада белковых веществ и их гидролиза другими способами (см. стр. 34). Помимо ценных сведений о строении белковой молекулы и переваривания белков, определение аминоазота дает возможность судить о содержании свободных аминокислот и пептидов в крови, моче и других жидкостях и тканях организма. [c.184]

    Обычные аминокислоты Обычные аминокисло- Катионит Двойная колонка Цитрат натрия Различные Нингидрин Нингидрин Зависимость содержания свободных аминокислот в моче от возраста человека Определение аминокислот в крови 10 11 [c.38]

    Таким образом, сама жизнь организма зависит от способности крови регулировать pH в определенных пределах. А это достигается содержанием в крови ацетатных, фосфорных и карбонатных буферных систем, а также систем с таким же действием из аминокислот и белков. [c.180]

    Проведены исследования по определению содержания аминокислот в сыворотке крови больных инфарктом миокарда и другими сосудистыми заболеваниями [63]. Найдены значительные изменения в содержании некоторых аминокислот в сыворотке крови больных с поражениями миокарда. [c.10]


    Параллельно с указанными изменениями в углеводном обмене отмечаются определенные изменения и в азотистом (белковом) обмене. Так, у животных с удаленными надпочечниками отмечается не только понижение содержания сахара в крови, но и уменьшение выделения азота с мочой. Наоборот, введение кортикостероидных гормонов ведет не только к повышению уровня сахара в крови, но и к увеличению содержания азота в моче. Параллелизм между этими двумя явлениями позволил сформулировать экспериментально подтвержденное предположение о том, что кортикостероидные гормоны стимулируют образование сахара (глюкозы) из продуктов распада белков (аминокислот). По-видимому, функция гормонов коры надпочечников в белковом обмене заключается в задержке синтеза и в усилении распада белков, в стимуляции синтеза углеводов из аминокислот, образовавшихся при этом усиленном распаде белков, или из аминокислот, не использованных в результате заторможенного белкового синтеза. [c.195]

    В цитоплазме клеток разных органов есть белковые рецепторы, способные избирательно присоединять глюкокортикоиды. После связывания с рецептором гормон перемещается внутрь клетки, где в составе транспортных комплексов с белками переносится в ядро и взаимодействует с хроматином, изменяя скорость транскрипции определенных генов, влияя тем самым на скорость синтеза соответствующих белков. Таким образом, глюкокортикоиды влияют на генетический аппарат клеток. Глюкокортикоиды преимущественно воздействуют на обмен углеводов усиливают синтез гликогенсинтетазы, вследствие чего ускоряется синтез гликогена. Они также мобилизуют триацилглицерины из жировой ткани и подавляют синтез антител, уменьшая чувствительность организма к чужеродным веществам и предотвращая развитие аллергических реакций и воспалительных процессов. В результате действия глюкокортикоидов в крови повышается содержание глюкозы, аминокислот, жирных кислот, глицерина, кетоновых тел. [c.303]

    К 1—2 мл крови добавляют равный объем 0,04 н. раствора СНзСООН, нагревают на кипящей водяной бане 2—3 мин, охлаждают я осадок белка отделяют центрифугированием. Центрифугат сливают и упаривают досуха. Сухой остаток растворяют в 0,1—0,2 мл смеси НСООН—СНзСООН—Н2О (7 5 13), нерастворившийся осадок отбрасывают. На хроматограмму наносят 0,01—0,02 мл полученного раствора и стандартные смеси аминокислот и хроматографируют в бута-нолуксусной смеси. После разгонки хроматограммы обрабатывают нингидрином, идентифицируют аминокислоты и проводят их количественное определение. Содержание аминокислот в сыворотке крови выражают в микромолях, миллиграмм-процентах или процентах к небелковому азоту. [c.195]

    Клетки, выращиваемые в тканевой культуре, могут утратить способность к ряду обменных превращений. Вполне вероятно, однако, что лишь некоторые виды клеток животного организма осуществляют такие реакции, как синтез глутамина или превращение фенилаланина в тирозин. По-видимому, глутамин синтезируется в определенных клетках и переносится к другим током крови. Интересно отметить, что минимальная концентрация глутамина, необходимая для оптимального роста тканевых культур, значительно выше, чем необходимые. концентрации других аминокислот. Количество глутамина в крови также значительно превосходит содержание в ней других аминокислот (табл. 3). [c.132]

    Буферные растворы играют важную роль в биологии и медицине. Так, водные растворы живого организма характеризуются определенными величинами pH. Например, pH крови колеблется в пределах 7—7,9 со средней величиной 7,4. Если pH выходит за эти пределы, то кровь теряет способность переносить кислород. Сама жизнь организма зависит от способности крови регулировать pH в весьма узких пределах. А это достигается содержанием в крови ацетатных, фосфорных и карбонатных буферных систем, а также систем с таким же действием из аминокислот и белков. [c.141]

    Особенно плодотворно изотопы применяются для исследования обмена веществ. Изучаемое вещество метят (поэтому метод получил название метод меченых атомов ), вводя в него радиоактивный изотоп меченое вещество вводят в организм. После его ассимиляции исследуют присутствие меченых атомов в различных химических фракциях в организме. Концентрация вводимого в организм радиоактивного изотопа должна быть небольшой, чтобы не нарушался обмен веществ, но такой, при которой, несмотря на разведение, изотоп мог бы быть обнаружен во всех выделяемых фракциях. Например, применение СОг с меченым углеродом позволило показать широкое участие двуокиси углерода в реакциях метаболизма бактерий и тканей живого организма, расширить наши представления о механизме фотосинтеза. Изотопный метод применяется в биохимии для количественного определения аминокислот в гидролизатах белков, содержания калия, натрия и других элементов в крови, для определения общего количества воды в живом организме, объема эритроцитов и плазмы в кровотоке и т. д. [c.12]


    Аминокислоты, необходимые для синтеза белков, доставляются к тканям кровью. Этим, однако, не исчерпывается участие крови в синтезе белков в организме. Большое значение в процессах обмена белков тканей имеют белки плазмы крови, альбумины и глобулины. У человека и животных постоянно н интенсивно происходит взаимопревращение белков плазмы крови и белков тканей. Это взаимопревращение приводит к тому, что между количеством белков (плазмы) в крови и содержанием белков в тканях устанавливается определенное равновесие. При голодании, кровопотерях (белковое голодание) это равновесие нарушается. Нормальное количественное соотношение между белками плазмы крови и белками тканей в этих случаях в организме легко восстанавливается при введении в кровь извне кровяной плазмы, или гетерогенной кровяной сыворотки. Подобное введение белков в кровь носит название парентерального белкового питания. [c.432]

    Функциональный резерв печени в отношении обычного уровня процессов дезаминирования и синтеза мочевины настолько велик, что они выполняются в полном объеме даже при сохранении всего лишь 20—10% неповрежденной паренхимы (А. Фишер, 1961 Wappler Справочник по клиническим и функциональным исследованиям, 1966). Поэтому как количественное определение содержания аминокислот в крови химическим путем, так и качественное их определение в крови и моче с помощью метода хроматографии позволяет установить изменения лишь при далеко зашедших поражениях паренхимы. В то же время, по данным зарубежных авторов, нагрузки такими соединениями, как гликокол и п-оксифенил-пировиноградная кислота (тестацид), часто позволяют открыть наличие начальных гепатоцеллюлярных поражений (Felix, [c.191]

    Определение муравьиной кислоты как в крови, так и в моче является большим подспорьем при дифференциальной диагностике отравления. Нужно иметь, однако, в виду, что муравьиная кислота может образовываться в организме в норме, по-видимому, при гидролитическом дезаминировании аминокислот. Содержание муравьиной кислоты в крови в норме составляет у человека 0,4 мг% (Stepp, Zumbus h, 1920), содержание муравьиной кислоты в суточном количестве мочи в норме колеблется [c.147]

    Как известно, молекулы белка построены из большого числа аминокислот. Поэтому при изучении структуры белка методом ИК-спектроскопии нельзя просто воспользоваться теми данными, которые были получены при исследовании полипептидов. В работе [137] изучали зависимость конформации от состава аминокислот для тех синтетических полипептидов, которые моделируют составные части белков. Было показано [1895, 1896], что при денатурировании дезоксирибонуклеиновых кислот в их спектрах исчезают полосы при 1645 и 1680 см и вместо них появляются полосы при 1660 и 1690 см- . Первые две полосы соответствуют регулярным водородным связям между звеньями пурина и пиримидина, которые придают прочность двойной спирали. Исследования проводили с использованием растворов в тяжелой воде. В работе [136] обсуждается необходимость спектроскопического изучения биополимеров, находящихся в Н2О и ВгО, поскольку эти жидкости являются их естественными растворителями. Там же рассмотрены соответствующие методики исследования. Изучены конформацион-ные изменения, происходящие при денатурации белков плазмы крови [1314, 1315J. Исследованы колебания пролинового кольца в пoли-L-пpoлинe [257, 259], который является составной частью многих белков. Был сделан вывод, что полосу при 1440 см можно использовать только для определения содержания остатков иминокислот в молекуле полипептида. [c.344]

    Хашимото и Пигман [55] обратили внимание на то, что в белковой части подчелюстных гликонротеинов быка, овцы и собаки, в подъязычном и цервикальном гликопротеинах быка и в групповых веществах крови А, Н и Ье из жидкостей кисты яичника количество остатков глицина, серина и треонина (существует обратное отношение между глицином и суммой окси-аминокислот) составляет примерно половину общего содержания аминокислот. Такое преобладание определенных аминокислот в гликопротеинах слизистых выделений весьма интересно и может быть использовано впоследствии для подразделения гликопротеинов на большие группы. [c.34]

    Эритроциты в крови можно по ряду свойств рассматривать так же, как частички гидрофобной эмульсии. На их поверхности адсорбированы молекулы белков, аминокислот и ионы электролитов. Все они сообщают эритроцитам определенный отрицательный заряд, а противоионы создают некоторый диффузный слой. При различных патологических процессах в организме, когда в кровн увеличивается содержание некоторых видов белков (либо особого глюкопротеида, относящегося к а-глобулинам, либо при инфекционных заболеваниях Y-глoбyлинoв), происходит процесс, очень напоминающий ионообменную адсорбцию место ионов электролитов на поверхности эритроцитов занимают белки, заряд которых ниже, чем у суммы замещенных ими ионов. В результате заряд эритроцитов понижается, они быстрее объединяются и оседают (ускоряется реакция оседания эритроцитов — РОЭ). Этот процесс зависит еще от ряда факторов содержания других белковых фракций и мукополисахаридов, концентрации эритроцитов в крови, наличия в крови микробов, наконец, расположения сосуда, в котором наблюдается РОЭ (в частности, скорость ее выше в наклонно расположенном капилляре). Оседание эритроцитов протекает сходно с процессом седиментации гидрофобного коллоида. Как показали исследования при помощи микрокинематографии (Кигезен), к имеющимся в крови агрегатам и монетным столбикам присоединяются отдельные эритроциты укрупнившиеся агрегаты оседают вначале быстро, а потом медленнее, так как в нижних частях капилляров их расположение становится настолько плотным, что частично сохранившиеся у них заряды начинают в большей мере противодействовать сближению частиц. Структура этого осадка напоминает губку чтобы его уплотнить, необходимо выжать оттуда воду, причем чем плотнее осадок, тем труднее это достигается. Поэтому в клинических исследованиях обычно не ожидают завершения оседания эритроцитов, а регистрируют результаты спустя 1—2 ч после начала реакции. Учитывая, что скорость процесса меняется на разных этапах, было предложено изучение его динамики измерением величины оседания эритроцитов каждые 15—30 мин (так называемая фракционная РОЭ). Этот метод представляет значительный интерес и находит широкое применение. [c.167]

    Общее содержание аминокислот в ткани мозга человека в 8 раз превышает концентрацию их в крови. Аминокислотный состав мозга отличается определенной специфичностью. Так, концентрация свободной глутаминовой кислоты в мозге выше, чем в любом другом органе млекопитающих (10 мкмоль/г). На долю глутаминовой кислоты вместе с ее амидом глутамином и трипептидом глутатионом приходится более 50% а-аминоазота головного мозга. В мозге содержится ряд свободных аминокислот, которые лишь в незначительных количествах обнаруживаются в других тканях млекопитающих. Это у-амино масляная кислота, К-ацетиласпарагиновая кислота и цистатионин (см. главу 1). [c.634]

    Некоторые величины, приведенные в таблице, являются приблизительными и основываются на небольшом числе определений тем не менее они дают представление о порядке величин, характеризующих содержание аминокислот в перечисленных биологических объектах. Другие данные о содержании свободных аминокислот в животных тканях, в моче и плазме крови человека и в растениях можно найти в статьях Таллана, Мура и Стайна [303], Стайна [307], Стайна и Мура [326] и Стюарда и Томпсона [340]. [c.65]

    Что касается аминокислот, входящих в состав гликопротеинов, то последние представлены чаще всего во всем их разнообразии, хотя можно отметить несколько интересных особенностей. Так, содержание ароматических и серусодержащих аминокислот обычно очень невелико. Отмече-но , что все известные гликопротеины по аминокислотному составу могут быть разделены на две довольно определенные группы. Гликопротеины одной группы, содержащие небольшой процент сахаров и близко стоящие к белкам, имеют обычный стандартный набор аминокислот к этой группе относятся гликопротеины плазмы и многие другие углеводсодержащие белки. Гликопротеины второй группы содержат относительно меньше аминокислот, но состав этих аминокислот более специфичен наиболее характерным признаком этой группы гликопротеинов является очень высокая доля оксиаминокислот (серина и треонина), которые в отдельных случаях, например в групповых веществах крови, составляют половину всех аминокислот аномально высоким бывает также содержание пролина и глицина.  [c.568]

    Исследование процессов синтеза белка в печени основывается на определении включения меченых свободных аминокислот в состав белковых молекул (И. П. Уланова, П. Г. Гарка-ви, 1961), а также на выявлении нарушений нормальных соотношений между отдельными белковыми фракциями. Для этой цели может быть использован метод электрофореза. При условии одновременного определения общего белка сыворотки крови этот метод позволяет выражать данные протеинограммы не в относительных, а в абсолютных величинах (в грамм-процентах), что дает более объективную информацию о содержании отдельных белковых фракций. [c.190]

    Большой клинический интерес представляет определение белка в сыворотке крови. Голодание организма или малобелковая диета приводит к гипопротеи не ми и, т.е. к понижению содержания белков в крови. При этом происходит нарушение синтеза мочевины, процессов дезаминирования, окисления фенилаланина и других аминокислот. Нарушение указанных процессов связано с недостаточным синтезом ферментов или с интенсивным распадом тканевых белков. [c.233]

    Полипептиды. Часть полипептидов поступает в кровь из кишечника при переваривании белков (стр. 328) другая часть является промежуточными продуктами распада белков тканей. Определение полипептидов, как и аминокислот, в плазме или сыворотке производится после удаления белков. Освобождение плазмы или сыворотки от белков достигается осаждением их трихлоруксусной кислотой, фосфорновольфрамовой кислотой и др. (стр. 23). В зависимости от способа удаления белков получаются различные числа, характеризующие содернсанпе полипептидов в плазме или сыворотке. Обычное содержание азота полипептидов составляет в норме от 0,1 до 3 мг%. [c.479]

    Ранее [227] считали, что групповые вещества крови являются непосредственно продуктами генов. Однако в последнее время были достигнуты очень крупные успехи в изучении функции генов на биохимическом уровне, в результате чего стало ясно, что эта точка зрения, по всей вероятности, ошибочна [228]. Теперь известно, что в дезоксирибонуклеиновой кислоте (ДНК) заложена информация, определяющая последовательность аминокислот в белках следовательно, функция генов групповых веществ заключается, очевидно, в том, что они определяют образование (через соответствующие промежуточные продукты) каких-то специфических белков, которые либо сами обладают ферментативной активностью, либо контролируют ферменты, участвующие в синтезе углеводов. Исходя из этого предположения, можно считать, что гены А, В, Н и Ье являются трансформирующими и контролируют определенные стадии превращения вещества-предшественника в специфические соединения, появляющиеся в секретах. Ген О (третий аллель Л50-локуса), ген к (аллель гена Н) и ген 1е (аллель гена Ье) не принимают участия в превращении вещества-предшественника. Согласно предложенной схеме, их можно рассматривать как неактивные гены. Вещество-предшественник считают макромолекулнрным гликопротеином с полностью синтезированными пептидными цепями и с углеводными цепями, уже присоединенными к макромолекуле, но еще не окончательно достроенными. Такой гликопротеин, очень сходный по своему составу и свойствам с групповыми веществами крови и отличающийся от них лишь очень низким содержанием фукозы, находят и в секретах тех немногих индивидуумов, у которых отсутствуют вещества А, В, Н, Ье и Ье [5, 21]. Эти соединения, дающие сильно выраженную реакцию преципитации с лошадиной антисывороткой к пневмококку тина XIV, очевидно, можно рассматривать как вещество-предшествен-ник в биосинтезе групповых веществ крови. [c.208]


Смотреть страницы где упоминается термин Аминокислоты содержание в крови, определение: [c.342]    [c.104]    [c.178]    [c.126]    [c.215]    [c.178]    [c.462]    [c.25]    [c.412]    [c.217]   
Биологическая химия Издание 4 (1965) -- [ c.480 ]




ПОИСК





Смотрите так же термины и статьи:

Кровь аминокислот



© 2024 chem21.info Реклама на сайте