Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопы производство

    Несмотря на исключительно многообразные возможности применения редких металлов и их сплавов, выделим здесь лишь некоторые основные области их применения. Это прежде всего ядерная техника, где необходимы такие металлы, как бериллий, ниобий и цирконий и др., в качестве материалов оболочки ядерного горючего в различных типах реакторов. Эти металлы отличаются малым сечением захвата тепловых нейтронов, высокой твердостью при рабочих температурах, хорошей теплопроводностью, устойчивостью к коррозии и т. д. Галлий и литий предложены, кроме того, в качестве рабочих жидкостей [последний— при условии его отделения от изотопа зЫ почему ) ]. Благодаря свойству значительно поглош,ать нейтроны гафний индий и европий используют для изготовления регулирующих стержней. Значительное количество редких металлов потребляет производство стали. Наряду с чистыми легирующими компонентами (например, Мо, V, , V) ряд редких и др. металлов используется в качестве раскислителей (например, редкоземельные элементы, кремний). Для современной авиационной промышленности и космической техники необходимы жаростой- [c.589]


    На управляемых реакциях деления ядер (урана, плутония) основано действие ядерных реакторов. Расщепление ядер в атомных реакторах используется для производства энергии, получения трансурановых элементов, радиоактивных изотопов других элементов и и др. [c.661]

    Применение радиоактивных изотопов для непосредственного аналитического определения и для химического контроля производства. Определение урана, тория и др. тяжелых радиоактивных элементов в различных минералах применялось давно. Разработаны также методы определения калия в калийных солях. Однако значительно большее значение имеет использование метода для изучения распределения какого-либо элемента между отдельными фазами. Для исследования распределения, например, фосфора во время плавки стали вводят в металлургическую печь фосфорнокислый кальций, содержащий радиоактивный фосфор Р"" с периодом полураспада 14,3 дня. [c.20]

    Основные изотопы, производство которых целесообразно осуществить на этом реакторе — это молибден-99, йод-131, ксенон-133, стронций-89. [c.556]

    Николаев А. В. и др., Всесоюзная научно-техническая конференция XX лет производства и применения изотопов и источников ядерных излучений в народном хозяйстве СССР . Секция Метод изотопных индикаторов в научных исследованиях и промышленном производстве . Тезисы докладов, Атом-издат, 1968, стр. 47. [c.197]

    Другая трудность заключалась в том, что не каждый атом урана, поглотивший нейтрон, претерпевает ядерное расщепление. Ядерному расщеплению подвергается довольно редкий изотоп — уран-235. Поэтому необходимо было разработать способы отделения и накопления данного изотопа. Это была беспрецедентная задача разделение изотопов в таких больших масштабах никогда ранее не проводилось. Исследования показали, что в этих целях можно использовать гексафторид урана, поэтому одновременно требовалось отрабатывать методику работы с соединениями фтора. После открытия плутония, который, как выяснилось, также подвергается ядерному расщеплению, было налажено производство его в больших количествах. [c.178]

    Хотя оба изотоп химически неразличимы и одинаково применимы для изготовлений фс1 1срверков (зеленый огонь), в производстве антисептической борной кислоты и термостойкого стекла, только В-10 можно использовать в качестве регулирующего материала в реакторах, для защиты от радиации и в приборах обнаружения нейтронов. Если молярная масса бора 10,81 г/моль, то какого из этих двух изотопов больше в природе  [c.317]


    Отходов от военных производств больше, чем от коммерческих. Кроме того, они жидкие, так как образуются при экстракции плутония из топлива, израсходованного реактором военного назначения (переработка использованного топлива гражданских реакторов в военных целях запрещена законами США). Так как изотопы в жидких отходах распадаются, они излучают радиацию и выделяют тепло, что еще больше усложняет проблему их захоронения. [c.358]

    В настоящее время для промышленного производства тяжелой воды применяют крупномасштабные установки [471. Значительные трудности аппаратурного характера возникают при разделении газовых изотопных смесей. Поэтому лабораторное получение изотопов при температуре кипения жидкого азота и жидкого воздуха пока еще слишком дорого. Однако если ректификационную установку присоединить к промышленной установке для получения кислорода из жидкого воздуха, то концентрирование изотопов Аг, 0 и N может оказаться очень экономичным [48, 491. По-видимому, очень выгодна низкотемпературная ректификация N0 при одновременном получении и 0 [50], а также ректификация СО при концентрировании [511. [c.222]

    Свинец применяется в производстве аккумуляторов, в качестве футеровочного и электродного материала в химической промышленности, в электротехнике для изготовления оболочек кабелей. Свинец является основным компонентом легкоплавких сплавов (например, гартблей для отливки типографского шрифта, баббитов для подшипников) из него изготовляют также экраны для защиты от -облучения и тару для хранения изотопов. [c.299]

    Формы применения метода радиоактивных изотопов для целей химического анализа и контроля производства отличаются большим своеобразием. [c.19]

    В третьем издании (2-е издание вышло в 1976 г,) помещены новые главы ( Комплексные соединения и Охрана окружающей среды ) е параграфы ( Оболочечная модель ядра атома и устойчивость изотопов , Производство минеральных удобрений , Химические источники тока и ряд других). Заново написан параграф Электролиз , дополнеи многие разделы книги. Отражено значение химии для понимания на- учной картины мира и формирование диалектико-материалистического мировоззрения. [c.2]

    Расширение применения центробежного метода получения стабильных изотопов связано с техническим прогрессом в конструировании газовых центрифуг и каскадов и с возможностью получения качественно новых результатов по обогащению ряда изотопов (производство моноизотопов ряда элементов). [c.166]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    Вы уже видели, как энергия атома урана может использоваться для производства электроэнергии. В большинстве других ядерных технологий ионизирующее излучение, исгускаемое при распаде некоторых специфических изотопов, используется либо для образования меченых атомов (меток), необходимых в некоторых аналитических методиках, либо в качестве источника энергии для облучения. Исследования с использованиемч радиоактивных меток важны в медицине, промышленН0С1И, фундаментальных научных исследованиях. [c.349]

    Очистка жидких радиоактивных отходов низкого уровня активности. Эти отходы составляют большую часть отходов в атомной энергетике, радиационнохимической промышленности и радиохимических производствах. Сбросные воды — отходы низкого уровня активности с удельной активностью меньше 10" Ки/л — из-за большого объема захо-ронять нецелесообразно. Поэтому они подвергаются обработке вода очищается до предельно допустимых концентраций по всем присутствующим изотопам, а сами изотопы концентрируются до минимально возможного объема и в таком виде передаются на захоронение. Современные схемы очистки сбросной воды являются чрезвычайно сложными и требуют значительных расходов дорогостоящих химических реагентов. [c.306]


    В табл. 63 приведены характеристики некоторых наиболее часто применяемых изотопов различных элементов. Большое и разнообразное применение метод меченых атомов нашел при химических исследованиях. С помощью этого метода изучают взаимодействие катализаторов с реагирующими веществами, строение молекул, механизм химических реакций, взаимодействие между раствором и осадком, диффузию в твердых телах, различные процессы, протекающие в растительных и животных оргаиизмах. На основе применения радиоактивных изотопов Ан. Н. Несмеяновым были разработаны новые методы определения давления насыщенного пара чистых веществ и парциальных давлений пара растворов, дающие возможность определять столь малые значения их, как 10 —10 мм рт. ст. и даже ниже. В настоящее время, бла- <, годаря большей доступности искусственно получаемых радиоак-тивных изотопов некоторых элементов, метод меченых атомов B eff более широко используется в исследовательских работах в раз- личных областях естествознания и техники. Он применяется для наблюдения за ходом производственных процессов, для контроля качества продукции, используется при автоматизации производства, применяется в медицине и сельском хозяйстве. [c.543]

    Уменьшение опасностей статического электричества в ряде производств успешно достигается ионизадией воздуха в местах возникновения зарядов. Чаще всего для этого применяют радиоактивные нейтрализаторы. Они представляют собой плоские длинные или круглые металлические пластинки, одна сторона которых покрыта радиоактивным изотопом. Изотоп создает у места образования или скопления зарядов положительные и [c.48]

    Зная возможную дозу излучения, можно рассчитать необходимую толщину защитного слоя каждого материала. Радиоактивные изотопы, применяемые в условиях производства, обыкновенно бывают заключены в ампулы. Ампулы перевозят в свинцовых контейнерах, а юн-тейнеры хранят в специальных анилищах, беспеч№ вающих защиту от излучений. [c.85]

    Если применяется графитовый анод нри электролизе в хлорнощелочной водной среде, то присутствие ванадия в графите недопустимо, так как в этом случае хлор обогащается водородом и в результате может образоваться взрывчатая водородно-хлорная газовая смесь. Самая высокая степень чистоты требуется при производстве графита, применяемого в атомной промышленности, так как некоторые элементы, содержащиеся в графите в крайне низких концентрациях, могут поглощать нейтроны. Кроме того, под влиянием нейтронной радиации в некоторых элементах возникает активационный эффект, способствующий образованию радиоактивных изотопов. [c.256]

    Необходимость получения чистых и сверхчистых продуктов практически увеличивает число этапов. Применение современных скоростных методов в их комплексе для анализа, испытаний, идентификации исходных, промежуточных и конечных продуктов (спек-трофотометрии, хроматографии, электроноскопии, рентгеноскопии, использовании радиоактивных изотопов, скоростной киносъемки и т. п.), а также современной вычислительной техники позволяет сократить цикл исследование — производство . [c.41]

    Разработка указанных выше основных процессов и аппаратов, а также других прогрессивных методов разделения и очистки веществ стимулируется непрерывно расширяющимся за последние годы промышленным использованием атомной энергии, значительным развитием производств изотопов некоторых элементов (урана, водорода и др.), полупроводниковых материалов, мономеров, полупродуктов для синтетических материалов и т. д. Эти отрасли новой техники предъявляют повышенные требования к чистоте продуктов я четкости разделения смесей. Для решения подобных проблем разрабатываются процессы пленочной ректификации, молекулярной дистилляции (глава XII), экстракционного разделения (глава XIII) и другие. [c.12]

    Ректификация известна с начала XIX века как один из важнейших технологических процессов главным образом спиртовой и нефтяной промьиилс нности. В настоящее время ректификацию все шире применяют в самых различных областях химической технологии, где выделение компонентов в чистом виде имеет весьма важное значение (в производствах органического синтеза, изотопов, полимеров, полупроводников и различных других веществ высокой чистоты). [c.472]

    Кобальт, начиная с 20-х годов нашего столетйя, стал одним йЗ важнейших легирующих металлов для производства. инструментальных сталей, термических сплавов, сплавов с особыми магнитными свойствами (77% всего выпускаемого кобальта). Значительную роль кобальт играет как катализатор в органическом синтезе, в производстве эмалей и красок, в медицине (изотоп °Со —в кобальтовых пушках). [c.287]

    Сплавы свинца с небольшим количеством натрия применяются в качестве антифрикционных сплавов. Сплав натрия и 90% свинца используется для производства тетраэтилсвинца. При сжигании натрия на воздухе образуется перекись натрия (Na202), которая жадно поглощает из воздуха СОг и выделяет кислород. Этот процесс используется для очистки воздуха изолированных помещений от СОа. Перекись натрия — исходный материал для получения других перекисей, применяющихся для отбеливания тканей и при получении цианистых солей. Радиоактивные изотопы натрия служат в медицине для исследования физиологических функций организма и медицинской диагностики. [c.519]

    СУРЬМА (Stibium) Sb — химический елемент V группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 51, ат. м. 121,75. Природная С. состоит из двух стабильных изотопов, известны более 20 радиоактивных изотопов. С. известна с глубокой древности. В некоторых странах С. принято называть antimonium. Сырьем для производства С является минерал сурьмяный блеск (стибнит, антимонит) SbaSg. Для С. известна одна кристаллическая форма и несколько аморфных (т. наз. желтая, [c.242]

    НЕОДИМ (Neodymium) Nd — химический элемент III группы6-го периода периодической системы элементов Д. И. Менделеева, п. и. 60, ат. м. 144,24, относится к лантаноидам. Открыт в 1885 г. А. Вельсбахом. Н. состоит нз 6 стабильных изотопов, известны 7 радиоактивных изотопов. Н.— серебристо-белый металл, в соединениях трехвалентный, по свойствам подобен другим лантаноидам. Н. применяют в металлургии, в производстве стекяа и фарфора, в радиоэлектронике и т. п. [c.172]

    ПРАЗЕОДИМ (Praseodymium, греч. prasinos — зеленый) Рг — химический элемент HI группы 6-го периода периодической системы элементов Д. И. Менделеева, п. н. 59, ат. м. 140,9077, относится к лантаноидам. П. состоит из одного стабильного изотопа, известны 15 радиоактивных изотопов. П. открыт в 1895 г. А. Вельсбахом. П.— металл, т. пл. 1024° С, по химическим свойствам сходен с лантаном. В химических соединениях П. трехвалентен, кроме оксида Рг Оп (предполагают РгзОз 4РГО2). Применяется П. для окраски стекла и эмалей, в производстве специальных сортов стали и жаропрочных сплавов магния. [c.202]

    СКАНДИЙ (S andium, от названия Скандинавия) S — химический элемент П1 группы 4-го периода периодической системы элементов Д. И. Менделеева, п. н. 21, ат. м. 44,9559. С. имеет один стабильный изотоп, известны 10 радиоактивных изотопов. Существование С. было предсказано Д. И. Менделеевым в 1870 г. Он подробно описал свойства С. и условно назвал его экабором. В 1879 г. С. был открыт шведским ученым Нильсоном в минерале гадолините, впервые найденном в Скандинавии. Содержится С. во многих минералах как примесь. С.— серебристый металл с характерным желтым отливом, т. пл. 1539° С. С. химически активен, при обычных условиях реагирует с кислородом, а при нагревании с водородом, азотом, углеродом, кремнием и т. п. растворяется в минеральных кислотах в соединениях С. проявляет степень окисления +3. С. извле-каЕот при переработке уранового, вольфрамового, оловянного сырья, также из отходов производства чугуна. С. применяют в виде сплавов для изготовления ферритов с малой индукцией (лля быстродействующих вычисл тельыых машин), [c.229]

    ТАНТАЛ (Tantalum назван по имени героя древнегреческой мифологии Тантала) Та — химический элемент V группы 6-го периода периодической системы элементов Д. И, Менделеева, п. н. 73, ат. м. 180,9479. Т. открыт в 1802 г. Экебергом. Природный Т. состоит из двух стабильных изотопов, известны 13 радиоактивных изотопов. Т.— металл серого цвета со слегка синеватым оттенком, т. пл. 2850° С, твердый, очень устойчив к действию кислот и других агрессивных сред, превосходит в этом даже платину. Получают Т. из тантало-ниобиевых руд. Т. в соединениях проявляет степень окисления +5. Используется для изготовления химической посуды, фильер в производстве искусственного во-токна, в хирургии для скрепления костей при переломах, для изготовления жаростойких, твердых и тугоплавких сплавов для ракетной техники и сверхзвуковой авиации, для изготовления электролитических конденсаторов, выпрямителей и криотронов, нагревателей высокотемпературных печей, арматуры электродных ламп, в ювелирном деле и др. [c.244]


Смотреть страницы где упоминается термин Изотопы производство: [c.100]    [c.202]    [c.18]    [c.38]    [c.54]    [c.59]    [c.129]    [c.138]    [c.149]    [c.151]    [c.175]    [c.216]    [c.220]    [c.239]    [c.256]    [c.265]    [c.276]   
Радиохимия и химия ядерных процессов (1960) -- [ c.661 ]




ПОИСК







© 2025 chem21.info Реклама на сайте