Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радий в природе

    В результате успешного проведения первых ядерных реакций были получены уже известные, встречающиеся в природе изотопы. Однако полученные таким образом нейтронно-протонные комбинации могли отличаться от комбинаций, характерных для природных изотопов. Ведь первые органические молекулы, синтезированные химиками, отличались от молекул природных соединений (см. гл. 6). Нейтронно-протонные комбинации нового типа были получены в 1934 г. французскими физиками супругами Фредериком Жолио-Кюри (1900—1958) и Ирен Жолио-Кюри (1897—1956) (дочь известных физиков супругов Кюри, прославившихся открытием радия, см. гл. 13). [c.172]


    Однако на уровне философского осмысления появились первые догадки о существовании "систематического" порядка среди них. Как отмечали Е. Рабинович и Э. Тило [10, с. 45] "... первым, кто занялся поисками "естественной системы элементов" был, по-видимому, И. Г. Марне". В своей книге "О числе элементов", опубликованной в 1786 г. (примерно в то же время, когда Лавуазье предпринимал первые попытки классификации химических элементов), он писал "Замечательная мысль о том, что все существующее в природе, по всей вероятности, связано в один беспрерывный ряд. ..давно было признано, что от мельчайшей пылинки, солнечного луча до святейшего Серафима можно воздвигнуть целую лестницу творений, хотя в ней и будут пока еще встречаться местами значительные пробелы". По его мнению, этот прогрессивный ряд должен охватывать и химические элементы."... Не только вследствие недостатка различных названий, но и ради преимущества в том, что каждый элемент будет иметь свое место в лестнице природы, было очень удобно представлять основные свойства под названием определенных чисел...", — отмечал он. Его слова оказались пророческими. Как мы увидим дальше, Менделеев обнаружил периодическую повторяемость свойств химических элементов только после того, как (по его выражению) "расположил их в один ряд по возрастанию атомного веса". [c.31]

    Составление уравнений реакций. При записи окислительно-восстановительных реакций обычно показывают, сколько электронов отдано окислителем и сколько приобретено восстановителем. Условно принято окисление отождествлять с отдачей электронов, а восстановление — с приобретением электронов, т. е. не принимается во внимание строение частиц, природа химической связи в них и механизм протекающего процесса. Ради [c.203]

    Однако к моменту открытия периодического закона только лишь стали утверждаться представления о молекулах и атомах. Причем атом считался не только наименьшей, но и элементарной (т. е. неделимой) частицей. Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран. Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской открыть два новых радиоактивных элемента полоний и радий. Последовавшее за этим установление природы а-, (5- н у-лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899 —1903 гг.), обнаружение ядер атомов диаметром 10 нм, занимающих незначительную долю объема атома (диаметр 10 нм) (Э. Резерфорд, 1909— 1911 гг.), определение заряда электрона (Р. М и л л и к е н, 1909— 1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Ф р а н к, Г. Г е р ц, 1912 г.), установление заряда ядра, равного номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позво или предложить следующую модель строения атома  [c.23]


    В 1900 г. Крукс (см. гл. 12) обнаружил, что свежеприготовленные соединения чистого урана обладают только очень незначительной радиоактивностью и что с течением времени радиоактивность этих соединений усиливается. К 1902 г. Резерфорд и его сотрудник английский химик Фредерик Содди (1877—1956) 5 высказали предположение, что с испусканием альфа-частицы природа атома урана меняется и что образовавшийся новый атом дает более сильное излучение, чем сам уран (таким образом, здесь учитывалось наблюдение Крукса). Этот второй атом в свою очередь также расщепляется, образуя еще один атом. Действительно, атом урана порождает целую серию радиоактивных элементов — радиоактивный ряд, включающий радий и полоний (см. разд. Порядковый номер ) и заканчивающийся свинцом, который не является радиоактивным. Именно по этой причине радий, полоний и другие редкие радиоактивные элементы можно найти в урановых минералах. Второй радиоактивный ряд также начинается с урана, тогда как третий радиоактивный ряд начинается с тория. [c.164]

    Радиационно-химические процессы в конденсированных средах и гетерогенных системах очень разнообразны и имеют различный радиа-ционно-химический выход G. Это процессы нецепной и цепной природы, полимеризация, прививочная полимеризация и др. Общие сведе,-ния о них даны в табл. 8.5- 8.7, заимствованных из работы [34]. [c.192]

    При записи окислительно-восстановительных реакций обычно показывают, сколько электронов отдано окислителем и сколько приобретено восстановителем. Условно принято окисление отождествлять с отдачей электронов, а восстановление — с приобретением электронов, т. е. не принимаются во внимание строение частиц, природа химической связи в них и механизм протекающего процесса. Ради упрощения записи обычно указывают степени окисления лишь тех атомов, у которых она меняется. Условным является и приписывание окислительно- [c.92]

    В зависимости от природы реагирующих веществ и условий их взаимодействия в элементарных актах реакций могут принимать участ е атомы, молекулы, радикалы или ионы. Свободными ради-калам - являются электронейтральные частицы, которые можно представить как осколки молекул, например -ОН (осколок от Н2О), [c.199]

    На следующий день утром, — вспоминал он поз- ке, — меня разыскал мой коллега Рубенс и рассказал, что после заседания, глубокой ночью, он сравнил мою формулу с данными своих измерений и всюду нашел радующее согласие . Радующее, впрочем, скорее экспериментатора Рубенса, получившего, наконец, желанную формулу, чем теоретика-классика Планка, воспитанного на принципе природа не делает скачков и отстаивавшего на страницах своей докторской диссертации 1879 г. мысль о том, что атомистические взгляды на строение материи приводят к противоречиям. Но, как бы то ни было, решающий шаг был сделан. [c.10]

    ЭКОЛОГИЧЕСКИЙ РИСК — в экологическом праве допущение вероятности причинения вреда природной среде ради достижения экологического или экономического эффекта. Нормальный экологический риск — основанное на познании и правильном использовании законов природы допущение вероятности причинения вреда при условии отсутствия серьезных необратимых последствий, реальной возможности воспроизводства потерянных природных ресурсов. [c.406]

    ЧуЕ)Ствительность активационного анализа зависит от источника возбуждения и периода полураспада образовавшихся радиоактивных нуклидов и может достигать 10 г. С другой стороны, она определяется также природой содержащихся в анализируемой пробе элементов, которые можно активировать. Источники потока нейтронов с небольшой плотностью, такие, как смесь бериллия и радия, активируют лишь немногие элементы, но позволяют определять их с большой точностью. Источниками потока нейтронов большой плотности являются ядерные реакторы. [c.389]

    Эти предварительные замечания помогают разобраться в общем характере изотермы адсорбции из растворов и во влиянии на нее химии поверхности адсорбента и природы адсорбата и растворителя. При достаточно высоких концентрациях подразделение компонентов раствора на растворенное вещество и растворитель теряет смысл. В случае бинарных растворов ради удобства будем называть адсорбатом преимущественно адсорбирующийся компонент раствора. Как и при адсорбции газов, значительную помощь при изучении адсорбции из растворов, в особенности из разбавленных растворов, оказывает хроматография, в данном случае открытая М. С. Цветом жидкостная адсорбционная хроматография. [c.249]

    По-видимому, уже из этого суждения следует вывод о необходимости изучения законов химической эволюции и законов биогенеза для решения проблемы освоения каталитического опыта живой природы. Небезынтересно в связи с этим напомнить, что даже наиболее оптимистически настроенные химики, которые с успехом моделируют биокатализаторы, все же считают, что они проявили бы легкомыслие, если бы утверждали, что изолированное изучение биокатализаторов— ферментов достаточно для получения исчерпывающей информации о том, что такое биокатализ [ 9, с. 13 . Да, конечно, фермент можно выделить из биосистемы можно точно определить его структуру, во всяком случае не менее точно, чем, например, структуру витамина А или какого-либо стероида. Фермент можно ввести в реакцию и заставить осуществлять каталитические функции. Но, получая фермент в чистом виде и с облегчением выбрасывая остатки исходных материалов, мы жертвуем новым ради привычного — разрушенная клетка со всем ее ферментным аппаратом более интересный объект, чем одна, грубо удаленная деталь (там же). Если в изучении биокатализа идти последовательно, то аналитическая стадия неизбежна. Однако задержка только на этой стадии означает отказ от познания механизма действия ферментативного аппарата в целом. Важно., не останавливаться на данных анализа, — говорит далее Л, А, Николаев,— и попытаться связать в одно целое сведения, относящиеся к деталям. Тогда окажется, что биокатализ нельзя отделить от проблемы биогенеза, и какими бы трудными ни казались эти вопросы, у исследователя остается утешение, что, не теряя их из виду, он все же сделает меньше ошибок, чем если вовсе забудет об их существовании (там же). [c.183]


    Радон — продукт радиоактивного распада радия. Чрезвычайно редкий, рассеянный, неустойчивый радиоактивный газ. Вследствие своей радиоактивности токсичен. При хранении быстро загрязняется тончайшей взвесью твердых, тоже радиоактивных, продуктов своего распада. В природе встречается (в виде чрезвычайно малой примеси) вместе с минералами, содержащими радиоактивные элементы урановые руды — UO2 и UO3, торианит (Th, и)Ог и др. [c.544]

    Распространение в природе. Элементы этой подгруппы в виде соединений широко распространены в природе, за исключением бериллия п радия. Наиболее распространены кальций и магний. В свободном состоянии они не встречаются вследствие высокой восстановительной способности. [c.252]

    В зависимости от природы функциональных групп различают, например, спирты (ОН-группа с алифатическим ради- [c.274]

    Естественные радиоактивные изотопы, т. е. изотопы, образующиеся в природе помимо деятельности человека, были обнаружены у очень многих элементов начала и середины периодической системы. В табл. 10 приводятся естественные радиоактивные изотопы элементов с порядковыми номерами от 1 до 83 (т. е. до тех естественных элементов, радиоактивные свойства которых были давно открыты и изучены), радиоактивность которых в настоящее время бесспорно установлена. Из табл. 10 видно, что, помимо девяти тяжелых радиоактивных элементов, известных еще с первых десятилетий исследования радиоактивности (полоний, астат, радон, франций, радий, актиний, торий, протактиний и уран ), естественные радиоактивные изотопы существуют, по крайней мере, еще у 46 химических элементов. Таким образом, большая часть элементов периодической системы обладает естественной радиоактивностью. [c.60]

    Вскоре были открыты другие радиоактивные элементы. В 1898 г. Пьер и Мария Кюри открыли радиоактивные полоний и радий, а Шмидт обнаружил радиоактивность тория. В 1899 г. Дебьерн открыл актиний. В настоящее время в природе известно около 50 различных радиоактивных атомов, [c.575]

    Распространение в природе и получение. Элементы ПА-подгруппы химически активны и встречаются в природе только в виде соединений. Содержание их в литосфере составляет, % (мае.) бериллия 6-10 , магния 2,1, кальция 3,6, стронция 0,04, бария 0,05 и радия 1 т. е. наиболее распространены в природе магний и кальций. [c.293]

    Как видно, в данном случае pH раствора зависит только от природы растворителя и растворенного протолита (рАа.ь рАд.г) и в первом приближении не зависит от. концентрации растворенного протолита. [c.56]

    Основным встречающимся в природе нуклидом радия является g Ra, имеющий период полураспада 1600 лет. [c.201]

    Чем объяснить, что радий, несмотря на то, что он непрерывно разрушается, до сих пор встречается в природе  [c.182]

    Возможность описания явлений ЯМР как в терминах квантовой механики, так и классической физики дает большое преимущество и представляет собой одну из приятных особенностей предмета. Для наших целей больше подойдет классическая картина, и большая часть дальнейшего изложения будет связана с поведением именно макроскопической намагниченности. Об этом нужно постоянно помнить. Все ге места текста, где мы будем переходить от микроскопической к объемной намагниченности, будут выделяться особо. Мы рассмотрим сначала поведение ядра в постоянном магнитном поле и природу радиочастотных электромагнитных волн и затем объединим их подходящим путем. Во всех последующих разделах мы будем рассматривать только ядра со спином 1/2. Символом В будет обозначаться магнитная индукция, которая удобна для измерения намагниченности в материалах с отличной от нуля магнитной восприимчивостью. Во многих публикациях вместо нее используется напряженность магнитного поля (символ И) или В и Н совместно. При нашем эмпирическом подходе различие между ними не существенно. Кроме того, мы будем совершенно свободно переходить от угловой скорости (в рад/с), обозначаемой вектором со или скаляром ю, к соответствующей частоте V (в герцах), предполагая, что читатель будет преобразовывать их друг в друга мысленно по формуле [c.98]

    Р. X. зародилась в 1895-96, первым наблюдаемым эффектом явилось почернение фотографич. пластинки в темноте под действием проникающего излучения (см Радиоактивность). Впоследствии была обнаружена способность лучей радия разлагать воду, стали появляться работы, посвященные хим действию излучения радона и др радиоактивных элементов, а также рентгеновских лучей на разл в-ва Интенсивное развитие Р х началось с 40-х гг. 20 в в связи с работами по использованию атомной энергин Создание ядерных реакторов и их эксплуатация, переработка и выделение продуктов деления ядерного горючего потребовали изучения действия ионизирующих излучений на материалы, выяснения природы и механизма хим превращений в технол. смесях, обладающих высокой радиоактивностью. При разработке этих проблем Р х тесно взаимодействует с радиохимией. [c.150]

    При облучении -у-квантами радиационнохимический выход ме няется в довольно широких пределах в зависимости от природь сенсибилизатора, но наблюдаемые закономерности те же, что и 1 случае светового активирования. Например, изомеризация непре дельных соединений в растворе циклогексана протекает с радиа ционнохимическим выходом от 2 до 10, а в растворах ароматиче [c.64]

    Элементарные кремний и германий представляют собой полупроводниковые материалы, которые в настоящее время очень широко применяются для производства транзисторов, термистеров, фотоэлементов и других деталей радиоэлектроники, радио- и электротехники. Электропроводность кристаллических германия и кремния (и других полупроводников) в значительной степени обусловлена ничтожными примесями атомов других элементов, замещающих атомы германия и кремния в их кристаллических решетках. Появление некоторого числа свободных слабосвязанных электронов или электронных вакансий, так называемых дырок, придает кристаллам полупроводниковых материалов свойство избирательной проводимости отрицательной — электронной — или положительной — дырочной. Электропроводность полупроводников определяется не только природой и концентрацией примесных элементов (которая, вообще говоря, обычно бывает очень мала атома примеси на 10 —10 атомов основного элемента), но и физическими [c.104]

    Д. И. Менделеев, руководствуясь периодическим законом, отвергал случайность в расположении элементов в системе. Наличие пустых мест между элементами он объяснял тем, что в природе существуют еще неизвестные нам элементы, которые в дальнейшем будут открыты. Таким образом он предсказал существование 11 элементов (см. первый форзац книги). Д. И. Менделеев в статье, напечатанной в 1871 г, вЖРФХО, писал Решаюсьэто сделать ради того, чтобы хотя со временем, когда будет открыто одно из этих предсказываемых тел, иметь возможность окончательно увериться самому и уверить других химиков в справедливости предположений, которые лежат в основании предлагаемой мною системы . [c.77]

    Последний щелочный элемент (франций) начинает седьмой период. Этот элемент не представлен в природе и был искусственно синтезирован. Валентный электрон этого элемента находится в 75-состоянии. Седьмой элемент заполняется подобно шестому. Внешние оболочки бария и актиния подобны таковым бария (радия) и лантана (актиния). Соответственно лантанидам существует четырнадцать актинидов, завершаемых 103 элементом — лауренсием. Электронные оболочки синтезированного в СССР 104 элемента подобны оболочке гафния, а оболочка 106 элемента, также синтезированного в СССР, подобна оболочке вольфрама. В последнее время в СССР был синтезирован 107 элемент. Седьмой период должен завершиться на 118 элементе, который должен быть аналогом радона. [c.319]

    Для стронцкя и бария сернокислые минералы более распространены, чем углекислые. Радий в природе связан с урановыми рудами (на 1000 кг урана руда содержит лишь 0,3 г радия). -  [c.386]

    Книга состоит из 20 глав, в каждой из которых рассмотрено по одной представляющей интерес функциональной группе. Главная задача книги — показать, каким образом одна функциональная группа создается из другой функциональной группы. Метод классификации, которого следовало придерживаться в прёделах каждой главы, поставил перед нами рад проблем. Идеальной классификацией, была бы такая, которая позволила бы рассматривать какую-нибудь реакцию только в одном месте. Однако осуществить это оказалось невозможным ввиду разносторонней природы некоторых органических реакций и ввиду того, что многие группы, представляющие интерес, полйфункциональны. Поэтому расчленение каждой главы часто произвольное. Каждая глава состоит из следующих типичных разделов  [c.7]

    Труден вопрос о природе предприятия. Начиная с XVII в., заводом (затем и фабрикой) нередко называли ремесленную мастерскую, общепринятых критериев нет, часто говорят о заводе ради краткости. Журнал История СССР недавно отметил, ЧТО до сих пор нет вполне единодушного понимания некоторых положений в работах классиков марксизма-ленинизма , как, например, о разграничении между мелкотоварным и капиталистическим производством и т. д., и подчеркнул недостаточность теоретического и конкретно-исторического изучения вопроса [c.22]

    Последнее равенство показывает, что ток обмена зависит от индивидуальной природы металла, которой в конечном счете 01предел яются константы скорости ионизации к[ и скорости разряда катионов металла из раствора кг.,Кроме того, он связан с концентрацией ионов металла в растворе. Ток обмена представляет важную электрохимическую характеристику любого равно весного электрода и может изменяться в очень широких пределах. Экспериментальные определения токов обмена наиболее надежно выполняются путем использования радиохимической методики применительно к амальгамным электродам. Равновесие на таком амальгамном электроде в контакте с раствором электролита, первоначально свободном от ионов активного изотопа, определяется следующим образом. Пусть а и Ь количество грамм-атомов металлов соответственно в фазе амальгамы и в растворе, с которым амальгамный электрод приведен в состояние равновесия. Скорость перехода активного изотопа в фазу раствора или же в обратном направлении пропорциональна относительному содержанию изотопа в данной фазе. Поэтому для произвольного момента времени 1 скорость перехода радио-акривного изотопа из амальгамы в раствор будет составлять [c.51]

    Исключительно плодотворным для Р х оказалось применение разработанного в 1960 метода имнугьсного радио гиза. Были идентифицированы мн короткоживущие промежут. частицы радиац -хим превращений и исследованы их св-ва, в т ч установлено образование сольватированных электронов при радиолизе жидкостей и определены времена сольватации электронов Совр теоретическую Р. х характеризует углубленное исследование механизма возникновения нестабильных хим продуктов в зависимости от природы излучения, мощности дозы излучения и др параметров Для ряда систем разработаны теоретич модети хим взаимодействия ионизирующего излучения с в-вом Установлены осн закономерности радиолнтич превращений в Гс зах, воде и водных р-рах, неорг в-вах, замороженных системах, полимерах Эти сведения позволяют обьяснть, а иногда н предвидеть пути протекания радиац -хим процессов в разнообразных системах. [c.150]

    В природе существуют ряды тория, урана-радия и актиноурана (т.наз. естественные P.p.). Это связано с тем, что периоды полураспада Th (1,405-10 лет), (4,468-10 лет) и (7,038-10 лет) соизмеримы с воз- [c.165]


Смотреть страницы где упоминается термин Радий в природе: [c.421]    [c.5]    [c.299]    [c.26]    [c.29]    [c.282]    [c.93]    [c.63]    [c.426]    [c.186]    [c.90]    [c.181]    [c.78]    [c.110]   
Радиохимия (1972) -- [ c.348 , c.349 ]

Основы общей химии Том 2 (1967) -- [ c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Кон ради

Радий

Радой



© 2025 chem21.info Реклама на сайте