Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Витамин свойства и структура

    Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических веществ. К ним принадлежат также многие элементоорганические соединения, связывающие воедино ранее разобщенные неорганическую химию и органическую химию. Многие комплексные соединения — витамин В12, гемоглобин, хлорофилл и другие — играют большую роль в физиологических и биохимических процессах. Исследование свойств и пространственного строения комплексных соединений оказалось чрезвычайно плодотворным для кристаллохимии, изучающей зависимость физико-химических свойств веществ от структуры образуемых ими кристаллов, и породило новые представления о природе химической связи. К ценным результатам привело применение комплексных соединений и в аналитической химии. [c.354]


    При окислении витамина В1 щелочным раствором красной кровяной соли, а также различными другими окислителями получают окрашенный в желтый цвет тиохром (ХСУП) [437]—вещество, выделенное также из дрожжей [438], хотя как таковое оно, по-видимому, в дрожжах не присутствует и образуется в процессе их обработки. Тиохром характеризуется интенсивной синей флуоресценцией, и это свойство используют для Оценки содержания витамина В, в биологических материалах [439]. Структура тиохрома подтверждена двумя независимыми синтезами [440]. Другие свойства витамина В1, например способность к обратимому окислению в дисульфид, являются по существу свойствами тиазольной части молекулы (см. т. 5). [c.255]

    В настоящее время накоплен большой экспериментальный материал, показывающий возможность применения полисопряжен-ных полимеров в качестве ингибиторов в процессах термической, термоокислительной, фото- и радиационной деструкции мономеров и полимеров. Известны каталитические и фотосенсибилизирующие свойства таких полимеров [277], их применение в качестве органических полупроводников [278], электронообменников [279] и др, Полисопряженные системы играют большую роль в формировании и эволюции белков и нуклеиновых кислот, а также являются основой структуры коферментов, витаминов, гормонов [280.  [c.284]

    Среди множества природных соединений существует обширный класс изопреноидов (или терпеноидов), включающий тысячи структурно различных соединений, которые объединены единством пути биосинтеза из небольшого числа ключевых предшественников. Роль некоторых соединений этого класса, таких, как витамины А и D или стероидные гормоны, уже давно известна они выполняют важнейшие регуляторные функции в организмах млекопитающих. Также понятна практическая полезность ряда других издавна известных изопреноидов, как, например, камфоры, ментола или каучука. Однако долгое время ничего конкретного не было известно ни о функциях, ни о полезных свойствах еще сотен природных соединений этого класса. В результате к 50-м годам XX в. сложилось мнение, что большинство изопреноидов, например растительного происхождения, образуются в живой клетке как физиологически инертный балласт для связывания отходов метаболизма (вторичные метаболиты). При этом как-то даже не ставился такой вопрос а почему все-таки организму потребовалось ценой значительных затрат энергии синтезировать те или иные, иногда очень сложные структуры, если их единственное назначение — обеспечивать функционирование системы удаления шлаков В те времена могло показаться, что лишь профессиональный педантизм и отсутствие воображения заставляют химиков вести нескончаемую работу по поиску и вьщелению, изучению строения, а также еще и синтезу все новых и новых природных изопреноидов. Типичная инвентаризация неликвидов, числящихся на балансе природы — вот мнение, которое авторам доводилось слышать от некоторых ученых-функционеров, от которых, к сожалению, зависело распределение средств на научные исследования. [c.19]


    Одно из удивительных свойств В12 состоит в способности образовывать алкильные производные [256]. До открытия Баркером витамина В12 считалось, что связь Со — Со должна быть непрочной, если вообще существует. Это первый и единственный пример устойчивого в воде природного металлорганического соединения. Его полная структура установлена в 1956 г. на основании кристаллографических работ Ходжкин и более ранних химических исследований Тодда и Джонсона. Полный синтез этого соединения осуществлен в начале 70-х гг. общими усилиями Вудворда и Эшен-мозера. [c.381]

    Молекула фолиевой кислоты (I) и ее производных, осуществляющих функции кофакторов в процессах метаболизма, таких, как 5,6,7,8-тетрагидро-птероил- -глутаминовая кислота, 5-N-фopмил-5,6,7,8-тeтpaгидpoптepoил-L-глутаминовая кислота (фолиновая кислота) и др. (см. раздел Птериновые коферменты ), в основной своей части высокоспецифична. Так, для проявления витаминных свойств обязательна птериновая структура, [c.485]

    Несмотря на это сходство, витамины В обладают вполне специфическими — присущими только им — свойствами. Структура молекул витаминов Вг и Вз изображается следующими формулами  [c.138]

    За более чем десятилетний период, прошедший со времени первого издания книги, в области химии витаминов появилось большое количество научных исследований, посвященных уточнению химической структуры витаминов, новым методам их синтеза, изучению физических, химических и биологических свойств, определению конфигурации 1 с-тра с-изомерных [c.3]

    По мере открытия отдельных витаминов им давались наз букв латинского алфавита. Буквенная классификация не отрг ни биологические свойства, ни химическую структуру витам поэтому была принята классификация, по которой витамины лись на жирорастворимые и водорастворимые. К витаминам, воримым в жирах, относятся провитамин А (каротин), В (ка ферол), Е (токоферол), К (викасол), Р (линолевая и линоле кислоты). К витаминам, растворимым в воде, относятся витам (аскорбиновая кислота), (тиамин), Ва (рибофлавин), Ве ( доксии), РР (никотиновая кислота), Р (рутин) и др. [c.6]

    Таким образом, к 1940 г. было окончательно установлено строение пантотеновой кислоть/. В соответствии со своей химической структурой пантотеновая кислота может образовать простые и сложные эфиры по окси-и карбоксильным группам, хлорангидриды, амиды и другие соединения [27]. С холином образует комплекс, обладающий биологическими свойствами обоих витаминов [28]. Устойчива к кислороду воздуха [22]. Наиболее важное биокаталитическое действие пантотеновая кислота проявляет в составе коферментных и ферментных систем (реакции ацетилирования холина, уксусной кислоты, аминов, спиртов) [29, 30, 31]. Простейшим биологически активным коферментом является пантетеин [14], который представляет собой продукт конденсации пантотеновой кислоты и 2-меркапто-этиламина H2N H2 H2SH и имеет следующую химическую структуру [c.138]

    Главная трудность на этом пути состоит в выборе такой системы в организме, которая давала бы с большей точностью зависимость структура—свойство . Такой в какой-то степени оказалась свертывающая система крови, эффективность которой можно было регулировать в весьма широких пределах с помощью ряда простых органических препаратов, обладающих анти-К-витаминной активностью. [c.110]

    Исходным веществом во всех этих синтезах обычно является витамин пиридоксол (141) или близкий к нему пиридоксамин (145). В связи с этим представляется целесообразным кратко рассмотреть химические свойства этих соединений, которые вместе с пиридоксалем (140) часто называют пиридоксином, или витамином Вб. Структура пиридоксола (141) была независимо установлена двумя группами исследователей [117]. На схеме (89) приведены важнейшие реакции этого определения. Наличие 3-гидрокси-пиридинового ядра установлено из характеристичного УФ-спектра, присутствие трех гидроксильных групп — из образования триацетата и трибензоата. Из этих групп только одна может метилироваться диазометаном с образованием метилового эфира (142). Осторожное окисление перманганатом бария дает дикарбоновую кислоту (143), содержащую все атомы углерода исходного соединения, включая С-метильную группу. Дикарбоновая кислота легко переходит в ангидрид (144). Характер замещений в пиридиновом кольце определен на основании наблюдения, что пиридоксол (141), но не его метиловый эфир (142) давал положительный тест на [c.635]

    По своей химической структуре токоферолы характеризуются относительно высокой специфичностью. Пространственная конфигурация метильных групп в положениях 2, 4 и 8 влияет на биологические свойства токоферолов [221]. Витаминная активность dZ-a-токоферилацетата, который более устойчив к окислению, чем свободный токоферол, в 1,47 раза превышает активность свободного /-а-токоферола. Активность /-а-токоферола составляет 0,68 и. е., для природного -а-токоферола она значительно выше — 0,92 и. е., а для -а-токоферилацетата — 1,36 и. е. по сравнению с витаминной активностью /-а-токоферилацетата, активность 1 мг когорого принята за 1 и. е. [222], Таким образом, активность природного а-токоферола с / -конфигурацией в положении 2 выше активности синтетического а-токоферола (рацемического) в положении 2 всего на 30%. а-Токоферол с S-конфигурацией в положениях 4 и 8 имеет такую же активность, как и его рацемат [9]. [c.286]


    Химическое строение и свойства. Витамин С бььл выделен в 1928 г., но связь между заболеваемостью цингой и недостатком витамина была доказана только в 1932 г. Витамин С является у-лактоном, близким по структуре к глюкозе. Его молекула имеет два ассимметрических атома углерода С С и С) и четыре оптических изомера. Биологически активна только Ь-аскорбиновая кислота. Аскорбиновая кислота образует редокс-пару с дегидроаскорбиновои кислотой, сохраняющей витаминные свойства. [c.53]

    Ее объектами являются как биополимеры (белки, нуклеиновые кислоты, целлюлоза, крахмал, гликоген и др.), так и низкомолекулярные биорегуляторы — витамины, гормоны и др. Поэтому поле деятельности этой науки исключительно широко. Биоорганическая химия в настоящее время сосредоточила свое внимание на ферментах, т. е. специфических белках, которые в своих реакционных центрах могут содержать металлы. Такие ферменты называются металлоферментами. Структуру и свойства реакционного центра таких ферметггов изучает бионеорганическая (позднее названная биокоординационной) химия. Таким образом, интересы обеих наук — биоорганической и бионеорганической химии тесно переплетаются в области металлоферментов. Если классическая общая биохимия была и остается чаще всего описательной наукой, то отпочковавшиеся от нее громадные разделы биоорганической и бионеорганической химии базируются на понятиях, представлениях и методах физической химии и химической физики, на принципах молекулярной биологии. Все разделы науки, которые выясняют химические основы жизненноважных процессов, относятся к биохимии. [c.718]

    Донорно-акцепторное взаимодействие подразумевает комплементарную пространственную упорядоченность центров связывания в доноре и акцепторе. Поэтому в любом синтетическом до-норно-акцепторпом комплексе центры связывания (полярные и дипольные) и стерические барьеры должны быть локализованы определенным образом, чтобы структуры обоих компоиентов соответствовали друг другу. Свойства существующих в природе акцепторов, мицелл и циклодекстринов рассмотрены в следующих разделах данной главы. Простетические группы гемоглобина, хлорофилла или витамина В12 также принадлежат к этой категории, поскольку селективно связывают ионы железа, магния и кобальта. [c.267]

    После установления химической структуры витаминов их тривиальные наименования стали приобретать химический смысл, например тиамин, рибофлавин, пиридоксаль, птepoил- -глyтaминoвaя кислота и т. д. Затем оказалось, что ряд давно известных органических веществ обладает свойствами витаминов к ним относятся никотиновая кислота, никотинамид, т. е. химические соединения с давно установившимися наименованиями. [c.6]

    Природные соединения делятся на несколько групп, обычно в соответствии с их структурой. К наиболее важным и необходимым для жизни природным продуктам относятся белки, нуклеиновые кислоты, сахариды и липиды. Каждая из этих групп соединений имеет характерные структурные особенности. Другие группы природных веществ имеют какие-либо другие общие свойства. Так, природные красители поглощают свет и сами являются окрашенными, витамины должны присутствовать в пище (обычно в малых количествах), чтобы предупредить заболевание организма, антибиотики представляют собой вещества, образующиеся в микроорганизмах и обладающие химиотерапевтическими свойствами. В микроорганизмах могут вырабатываться и чрезвычайно ядовитые для человека и животных соединения. В качестве примера приведем афлатокси-ны, продукты плесени Aspergillus flavus, которые относятся к наиболее ядовитым соединениям и, кроме того, оказывают сильное канцерогенное действие. Некоторые природные соединения объединяются по способу получения. Так, например, стероиды и терпеноиды образуются из изопреновых фрагментов (откуда возникло их общее название — изопреноиды), алкалоиды — из аминокислот. [c.179]

    Во второй часта кратко рассмотрены новые технологаи ситеза органических продуктов (изопреноидной структуры) - для производства витаминов и душистых веществ. Представлены принципиальные схемы синтеза этих веществ, включающие реакцию этинилирования, реакцию непредельных кетонов с ацстоуксусным эфиром (реакции Кэррола), реакцию селективного гидрирования тройной связи ацетиленовых спиртов, а также реакции випилирования ацетиленом различных соединений с получением мономеров, пригодных для производства полимеров с ценными свойствами, рассмо1рены технологические методы выделения и очистки указанных соединений, [c.7]

    В химическом отношении пиридоксин проявляет свойства стабильного азотистого основания. Из растворов он осаждается фосфорновольфрамовой кислотой солями тяжелых металлов (свинца, ртути, серебра, платины), его осадить нельзя. Минеральные кислоты, нагревание или охлаждение на витамин Ве не оказывают влияния [23]. Не действует на него также жидкость Фелинга [21 ]. С хлорным железом пиридоксин подобно фенолам дает красновато-коричневую окраску. Изучением химической структуры пиридоксина занимались в 1938—1939 гг. различные исследователи Стил-лер, Керештези, Стивенс и Гаррис [5, 23, 25] в США Кун, Вендт и Вестфаль [26—29] в Германии Итиба и Мити [30] в Японии. [c.154]

    В издании рассмотрены все основные классы природных соединений, для которых приведены кпассификации, особенности молекулярной структуры, таблицы типичных представителей, схемы характерных химических реакций, значимые медико-биологические свойства, пути биосинтеза, природные источники При создании книги использована оригинальная литература по 2000 год вкпючительно Содержание книги отражено в 13 главах Введение, Простейшие бифункциональные природные соединения. Углеводы, Аминокислоты, пептиды и белки. Липиды жирные кислоты и их производные, Изопреноиды-1, Изопреноиды-И, от сесквитерпенов до политерпенов. Фенольные соединения. Алкалоиды и порфирины. Витамины и коферменты, Антибиотики, Разные группы природных соединений, Металло-знзимы, Предметный указатель [c.2]

    Витамин Вт (карнитин). По своему химическому содержанию — это у-ами-но-р-гидроксикарбоновая кислота бета-иноаой структуры, которая присутствует в тканях животных, растений, в микроорганизмах. Для некоторых насекомых карнитин является собственно витамином. Высшие животные синтезируют его из 1-лизина и далее используют в качестве кофермента, участвуюш,его в переносе остатков жирных кислот через мембраны из цитоплазмы в митохондрии. Карнитин, взаимодействия с коферментно связанной жирной кислотой, образует бифильное производное жирной кислоты, имеюш,ее высокое сродство к липидному слою клеточных мембран. Это свойство и обеспечивает ему легкость внедрения в мембрану и транспорт через нее. Жирная кислота высвобождается после транспорта реакцией гидролиза (схема 10.2.13). [c.281]

    Изучение и получение витаминов — природных незаменимых пищевых веществ— имеет важное значение. На основе предложенной химической классификации витаминов детально изложены и обобщены вопросы химии витаминов в ее современном состоянии, методы выделения из природных источников, различные методы синтеза. Рассмотрена зависимость биологической активности от структуры витаминов, коферментов и их химических модификаций. Детально излои ена химия провитаминов и рассмотрены пути их превращения в витамины. Даны представления о биологических свойствах витаминов, их превращении в коферменты, о биокаталитических функциях коферментов в обмене веществ животного организма, о роли витаминов в питании и путях их применения в пищевой промышленности, а также в животноводстве, о значении витаминов и коферментов в профилактике и лечении различных заболеваний. [c.2]

    В случаях, когда биологически активные вещества разрушаются при традиционных методах измельчения и сущки, применяют технологию криогенного измельчения и сущки свежего лекарственного растительного сырья. При этом ингибируются такие биохимические процессы, как перекисное окисление липидов, денатурация и диссоциация белковых молекул, пигментация, которые необратимо меняют биохимические свойства веществ, содержащихся в сырье. Криогенная переработка растительного сырья позволяет полностью сохранить нативную структуру не только находящихся в нем витаминов, но и молекулярных комплексов, содержащих широчайший спектр необходимых человеку микроэлементов. Этот факт чрезвычайно важен для полноценного усвоения витаминов и микроэлементов организмом человека. Практика внедрения криогенных перерабатывающих технологий показала, что наиболее оптимальным является вариант их комбинированного применения, позволяющий совместить целый ряд промежуточных технологических этапов и приводящий к значительному уменьшению затрат на дорогостоящее криогенное оборудование и производственные площади. Кроме того, определенные комбинации криогенных технологий позволяют получить принципиально новые продукты переработки. К ним можно отнести реструктурированные водные растительные экстракты, содержащие активные фрагменты витаминов, сложных эфиров и аминокислот жирорастворимые фракции с витаминами А, Е, К, Р, получаемые из криосублимированного растительного сырья растительную клетчатку, очищенную от ненасыщенных жирных кислот и содержащую водорастворимые витамины С, Р и основные микроэлементы. [c.480]

    По своей структуре рибофлавин высокоспецифичен уже небольшие изменения в его молекуле приводят к потере витаминной активности или к появлению антивитаминных свойств. Среди многочисленны.ч искусственных флавинов и других изоаллоксазинов лишь немногие обладают частичной витаминной активностью рибофлавина (табл. 21). [c.546]

    Естественно, что здесь нельзя изложить подробности, отно-сящ,иеся к структуре и свойствам громадного числа природных и физиологически активных соединений. Биологическая роль многих из них весьма сущ,ественна. Витамины, гормоны, кофакторы можно объединить общим термином биорегуляторы. Эти вещества регулируют биохимические процессы в клетке и в организме. Подробные сведения о биорегуляторах приведены в современных курсах биохимии, например в [33]. [c.102]

    Структура боковой цепи оказывает количественное влияние на активность продукта облучения Слабая активность витамина Оз, получаемого из 7 деги дроситостерола, и почти полное отсутствие ее у витамина Ое получаемого из 7 дегидростигмастерола свидетечьств>ет, что удлинение боковой цепи на 1 атом углерода сверх 9 снижает или почти лишает стерол его провитаминных свойств [c.213]

    Аскорбиновая кислота (витамин С) содержится во многих фруктах и овощах. Она необходима для жизнедеятельности организма человека и животных, -аскорбиновая кислота катализирует окислительно-восстановительные процессы в организме. Сама аскорбиновая кислота является сильным восстановителем. Эти свойства ей придает ендиольная структура. В отличие от других а-гидро-ксикарбонильных соединений аскорбиновая кислота является фиксированным ендиолом. [c.515]

    Как модели, липосомы значительно ближе к биологическим мембранам, чем бислойные липидные пленки. Как и биологические мембраны, они предстввляют собой замкнутые системы, что делает их пригодными для изучения пассивного транспорта ионов и малых молекул через липидный бислой. В отличие от БЛМ, липосомы достаточно стабильны и не содержат органических растворителей. Состав липидов в липосомах можно произвольно варьировать и таким образом направленно изменять свойства мембраны. В настоящее время хорошо разработаны методы включения функционально-активных мембранных белков в липосомы. Такие искусственные белково-лнпидные структуры обычно называются протеолипо-сомами (рис. 310). Благодаря возможности реконструкции мембраны из ее основных компонентов удается моделировать ферментативные. транспортные и рецепторные функции клеточных мембран. В липосомы можно авести антигены, а также ковалентно присоединить антитела (рис. 311) и использовать их в иммунологических исследованиях. Они представляют собой удобную модель для изучения действия многих лекарственных веществ, витаминов, гормонов, антибиотиков и т. д. Как уже отмечалось, при образовании липосом водорастворимые вещества захватываются вместе с водой и попадают во внутреннее пространство липосом. Таким путем можно начинять липосомы различными веществами, включая [c.579]

    Сопоставление способности различных производных эргостерола превращаться в витамин О под влиянием ультрафиолетового облучения привело к выводу, что эта способность связана с наличием во втором ядре стеролов конъюгированных (двойных) связей. Насыщение одной из этих связей "лйиШет сте рол " го гфТтвитами1 ь1Х свойств. Между тем, насыщение двойной связи в боковой цепи не лишает молекулу стерола способности превращаться в витамин О. Это открытие привело к выводу о возможности получения большого числа стеролов, обладающих провитаминными свойствами и различающихся между собой по структуре боковой цепи. Впоследствии подтвердилось, что провитаминными свойствами обладают стеролы различного происхождения. [c.207]

    Существует несколько подходов к составлению программы целенаправленного синтеза новых лекарственных препаратов. Весьма плодотворным оказался метод модифицирования структуры уже известных синтетических или природных лекарственных веществ (например, антибиотиков и стероидов), который позволил получить ряд ценных противомикробных и противовоспалительных средств и пероральных противозачаточных препаратов. По альтернативному методу берут небольшой фрагмент химической структуры известного лекарства, вводят его в молекулы других соединений и исследуют биологическое действие полученных веществ. При этом было найдено, в частности, что вещества, содержащие структурный фрагмент кокаина, сохраняют анестезирующие свойства. Знание структуры известного фармацевтического препарата, обладающего потенциально полезным побочным эффектом,- иногда позволяет усилить последний до уровня, приемлемого для терапевтических целей, одновременно ослабив основной эффект, присущий исходному препарату. Примером использования такого подхода может служить история создания сульфамидных диуретиков (мочегонных препаратов), которые появились в результате наблюдения, что противомикробное средство сульфаниламид обладает мочегонными свойствами. Имеется много примеров создания лекарств, оказывающих определенное влияние на протекание биологических процессов. Так, ампролий вылечивает кокцидиоз у цыплят, индюков и крупного рогатого скота за счет того, что он блокирует метаболизм витамина В в организме микроскопического паразита — кокцидия (т. е. ведет себя как антиметаболит ) и поэтому токсичен для него. Менее ясна связь между структурой и активностью в случае химических соединений, ингибирующих биологический процесс. Например, алкилирующие агенты, подавляющие рост раковых опухолей, не обязательно должны быть родственными по химическому строению. Синтезированы соединения, биологическая активность которых [c.401]

    Тиазол (1,3-тиазол) — представитель ароматических гетероциклов с двумя различными ге героатомами. Он обладает слабыми основными свойствами и образует соли с сильными кислотами за счет пиридинового атома азота. Структура тиазола встречается в составе важных биологически активных веществ — тиамина (витамина В ), сульфаниламидного препарата норсульфазола. [c.368]

    Научные работы относятся к химии природных соединений. Выделила, установила строение н синтезировала многие природные физиологически активные соединения, изучила зависимость между их структурой и биологической функцией. Синтезировала ряд алкалоидов изохннолинового и ин-дольного рядов. Рассчитала электронную структуру природных порфиринов и установила ее корреляцию с физико-химическими свойствами этих соединений. Синтезировала природные порфирины и их металлические комплексы. Осуществила синтез гемпептидных и ретинилиденпептидных фрагментов природных хромопротеидов. Создала методы синтеза основных классов липидов и их структурных компонентов, входящих в состав головного и спинного мозга и клеточных мембран. Разработала технологию получения витаминов Е и К1 и предшественников простагландинов. [c.183]

    П. Каррера установил (1933) структуру а- и р-изомеров каротина. Предложил (1937) метод их синтеза. Выделил (1933) кристаллы витамина Вг (рибофлавина) из сыворотки молока и из белка яиц. Синтезировал (1936) рибофлавин-5-фосфат, установил (1938) строение флавииадениндинуклеотида. Выделил (1939) витамин Ве (адермин) из дрожжей и предложил его элементарную, а затем и структурную формулы. Синтезировал многие природные вещества, в том числе около 300 растительных пигментов. Изучал связь строения ненасыщенных соединений с их оптическими, магнитными и диэлектрическими свойствами. [c.271]

    Противоцинготный фактор свежих фруктов и овощей, предотвращающий развитие симптомов цинги у человека, представляет собой производное класса углеводов, известное под названием витамина С, или аскорбиновой кислоты. Это соединение в действительности не кислота, а лактон — оно обладает кислотными свойствами (и большой склонностью к окислению), поскольку в его структуре присутствует ендиольная груп пировка. Оно принадлежит к ряду ь-глицериноцого альдегида. [c.566]

    Бальзамы для волос, тлкже рекомендуемые для ухода за волосами после мытья их шампунями, отличаются содержанием полезных веществ, благоприятно влияющих на структуру волос и кожу головы. БАЛЬЗАМ ДЛЯ ВОЛОС БАЛЕТ — универсальное средство для ухода за волосами. В его составе имеется катионак-тивный продукт, который дает антистатический эффект. В качестве биологически активных компонентов в бальзам введены растительные экстракты хмеля, аира, череды, богатые витаминами и провитаминами. Благодаря добавке поливинилпир-ролидона на волосах образуется тонкая защитная пленка, и волосы легко поддаются укладке. Бальзам для волос БАЛЕТ по своим потребительским свойствам не уступает зарубежным препаратам. [c.72]


Смотреть страницы где упоминается термин Витамин свойства и структура: [c.303]    [c.19]    [c.440]    [c.192]    [c.13]    [c.720]    [c.242]    [c.207]    [c.40]    [c.229]    [c.365]    [c.267]    [c.327]   
Теоретические основы биотехнологии (2003) -- [ c.282 , c.283 ]




ПОИСК





Смотрите так же термины и статьи:

Витамин свойства



© 2024 chem21.info Реклама на сайте