Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Правила отбора в спектре водород

    Все наблюдаемые серии спектра водорода описываются этим уравнением. Так, серия Бальмера отвечает значению п = 2, серия Лаймана — 1 = 1 и т.д. При испускании или поглощении кванта света п может меняться произвольно. Это означает, что для главного квантового числа нет правила отбора, которое устанавливает возможные переходы для других квантовых чисел. [c.306]


    Спектральные правила отбора. Теперь. мы располагаем энергиями всех возможных энергетических состояний атома водорода, и нельзя удержаться от искушения отнести атомный спектр к переходам между всеми возможными парами состояний. Можно было бы сказать, что изменение энергии Л в атоме приводит к возникновению фотона с энергией А и поэтому к частоте л , определяемой следующим образом  [c.484]

    Рассмотрим атом водорода с ядерным спином / = /3, содержащий электрон, который имеет спин, также равный 1 . Таким образом, как для ядра, так и для электрона возможны две ориентации относительно внешнего магнитного поля. Больший магнитный момент связан с электроном, и его ориентации сами по себе приводят к появлению единичной линии поглощения. При каждой ориентации электрона ядро может иметь одну из двух возможных для него ориентаций. Таким образом, верхний и нижний спиновые уровни электрона расщепляются па два уровня. Ядро увеличивает или уменьшает результирующее поле, в котором находится электрон на каждом из своих двух уровней или ориентаций, на дискретную величину. Два уровня для свободного электрона становятся благодаря воздействию атома водорода четырьмя уровнями. Однако разрешены не все переходы между этими четырьмя уровнями. В общем случае колебания электрона происходят независимо от ядерных колебаний. При этом мы имеем правило отбора А/ = 0 другими словами, разрешены только те переходы, нри которых изменяется спин электрона, а ядерный спин остается постоянным. (Возможные примеры запрещенных переходов приведены в работах [92, 133, 137].) В случае атома водорода это приводит к двум линиям, разделенным интервалом 500 гс. Это большая величина для ЭПР, которая является результатом сильного взаимодействия между ядром и одним s-электроном. Крайние линии спектров а, б и г, показанных на рис. 187, обусловлены атомами водорода. Спектры приведены в виде первых производных поглощения. Аномальный вид линий на спектрах виг является результатом насыщения мощности. [c.433]

    Сериальные закономерности. Правила отбора (2.6) позволяют выяснить, с какими переходами связаны серии линий, наблюдаемые в спектре водорода. Спектр водорода состоит из отчетливо выраженных серий линий, длины волн которых удовлетворяют еле-дуюш.им формулам  [c.21]

    ЗЗе. Колебательно-вращательные спектры комбинационного рассеяния. Теоретически возможны одновременные колебательные и вращательные переходы при комбинационном рассеянии правила отбора в этом случае одинаковы с теми, которые определяют отдельные переходы каждого вида, а именно Дг = + 1 и Д/ = 0, 2. Вследствие того что возможно условие Д/=0> в спектре комбинационного рассеяния наблюдается линия, соответствующая -ветви. Частота этой линии, которую обозначим ДУо, одинакова с частотой чисто колебательных переходов. Вследствие различия моментов инерции молеку-лы в двух колебательных состояниях ()-ветвь должна в действительности состоять из некоторого числа тесно расположенных линий (параграф 29д). Однако только для водорода, имеющего очень малый момент инерции, удалось разрешить линии, составляющие -ветвь. Тонкая структура несомненно существует и во всех других случаях, но до сих пор она не была еще разрешена. Надо отметить, что двухатомные молекулы, которые обычно не обладают -ветвью в своих колебательных спектрах, имеют -ветвь в спектрах комбинационного рассеяния. [c.252]


    Для исследования полимеров методом инфракрасной (ИК) спектроскопии предварительно желательно определить источники появления полос поглощения в спектрах. Для этого следует установить частоты колебаний характеристических групп в соответствующих низкомолекулярных соединениях и в полимерах, изучить правила отбора колебаний путем анализа симметрии полимерной молекулы или кристалла и рассчитать силовые постоянные и колебательные спектры. Если полимер содержит атомы водорода, то большую помощь может оказать изучение спектров родственных соединений, в которых атомы водорода частично или полностью замещены на дейтерий. Это дает возможность отнести ряд водородных и некоторых других частот. Кроме того, большинство полимерных образцов могут быть ориентированы тем или иным способом, а затем получены их спектры в поляризованном инфракрасном свете. Из поляризационных спектров можно определить направление, в котором наблюдается максимальное поглощение, или направление момента перехода полосы поглощения по отношению к некоторой фиксированной оси или плоскости полимерной молекулы. Когда определены как поляризация полосы, так и природа колебания, можно получить некоторую информацию относительно строения полимерной молекулы. С другой стороны, когда известно строение полимерной молекулы или кристалла, наблюдаемая поляризационная полоса может быть использована для ее идентификации. Вследствие этого использование дейтерирования и поляризационной техники при ИК-спектро-скопическом исследовании полимеров в последнее время очень резко возросло. Цель данной главы — дать общий обзор этих методов и обсудить ИК-спектры некоторых природных и синтетических полимеров. С другими аспектами ИК-спектроскопического исследования полимеров можно ознакомиться в опубликованных ранее обзорах [1—5]. [c.36]

    Во многих случаях для облегчения анализа спектров может быть применен чрезвычайно полезный метод, основанный на зависимости частот колебаний от масс атомов. Замещение атомов их изотопами, в частности замещение атомов водорода в углеводородах атомами дейтерия, заметно изменяет инфракрасные спектры и спектры комбинационного рассеяния н позволяет получить ряд важных сведений. Поскольку силовые постояниые практически не зависят от изотопического состава, исследование спектров полностью дейтерированных углеводородов позволяет получить допо.инительиое число частот для вычисления силовых постоянных и поэтому применяется в ряде с-дучаев. Кроме того, частичное дейтерирование симметричных молекул уменьшает их симметрию, изменяет правила отбора и приводит к расщ(шлению вырожденных колебаний на невырожденные (т. е. к снятию вырождения с некоторых колебаний). Подобные изменения часто чрезвычайно важны для определения и отнесения основных частот исходных (недейтерированных) углеводородов. [c.301]

    Используя условие частот Бора н правила отбора, прсдска- зать вид спектра атома водорода (стр. 484). [c.473]

    З N — 6 (или 3 N — 5 в случае линейных молекул) колебательных К. ч. При описании мол. орбиталей в квантовой химии примен. также нецелые эффективные главные квантовые числа, имитирующие главное К. ч. п. Специальные наборы К. ч. использ. для задания спинов ядер, спина всей системы ядер молекулы и сумм спина ядер с др. моментами молекулы. К. ч. широко использ. при аиализе структуры спектра молекулярных и атомных систем с помощью К. ч., как правило, формулируются правила отбора. В. И. Пупышев. КВАНТОВЫЙ ВЫХОД, отношение числа молекул, участвующих в фотохим. илн фотофиз. процессе, к числу поглощенных фотонов. Для фотохим. р-ций К. в. рассчитывают в единицу времени (дифференциальный К. в.) или в нек-рый промежуток времени (интегральный К. в.). Исходя из значений К. в. определяют скорости фотохим. р-ций, константы скорости первичных фотопроцессов и др. К. в. неценных фотохим. р-ций изменяегся от очень малых значений до 1 для цепных процессов он м. б. значительно больше 1, наир- для р-ции хлора с водородом — 10 — 10 . От К. в. следует отличать квантовую эффективность, к-рая равна отношению скорости процесса к скорости образования того возбужденного состояния, из к-рого протекает данный процесс. К. в. равен квантовой эффективности только для процессов, происходящих иэ синглетного возбужденного состояния. [c.252]

    Поэтому в спектре атома водорода в дополнение к исходным линиям при наличии магнитного поля должен появиться ряд новых линий, расположенных по обе стороны от основных. Это связано с тем, что m и т могут принимать как положительные, так и отрицательные значения. Более того, линии должны располагаться на равных расстояниях, пропорциональных напряженности магнитного поля Н. Эти факты были открыты Зееманом еще в 1896 г. Интересно, что величина разделения линий еЯ/4лгИеС не содержит постоянной Планка. Вот почему классическая электромагнитная теория света смогла объяснить эту величину. Лармор показал, что задачу можно решить, если использовать аналогию с движением вращающегося волчка при действии небольшой по величине внешней силы. Движущийся по орбите электрон ведет себя подобно волчку — исходная частота движения электрона по орбите остается почти неизменной, однако плоскость орбиты прецесси-рует. Лармор показал, что частота, отвечающая прецессионному движению, равна еН/ пт с. Однако классическая теорпя не была в состоянии объяснить число спектральных линий, возникающих в магнитном поле. Перед тем как перейти к другим темам, укажем еще на одно важное обстоятельство. Из уравнения (108) видно, что в общем случае может иметь 2/с2 + 1 различных значений, а wij может иметь 2/ -fl значений. Поэтому переходы между двумя состояниями, описываемыми с помощью чисел f j и / j, могут осуществиться 2k - -i) (2/q + l) способами. Одиако на опыте найдено значительно меньше линий, чем следовало ожидать пз уравнения (110). Это означает, что некоторые из возлюжных переходов фактически являются запрещенными. Дальнейшие опыты показали, что волновые числа, соответствующие наблюдающимся на опыте линиям, можно найти, если предположить, что возможны только такие переходы, при которых т изменяется на единицу или остается постоянным. Это дает нам первое эмпирическое правило отбора, а именно [c.122]


    Правила отбора, отражающие закономерности переходов в спектрах комбинационного рассеяния, можно лучше всего понять с практической и теоретической точек зрения, рассмотрев некоторое воображаемое третье состояние рассеивающе молекулы, занимающей уровень энергии, отличающийся от участвующих в переходе уровней. Тогда правило отбора можно сформулировать следующим образом переход между состоянием а и состоянием Ь реализуется только в том случае, если каждое из этих состояний может комбинироваться с третьим состоянием с. Из данных, полученных при изучении инфракрасных спектров, известно, что в случае хлористого водорода, например, могут происходить только переходы, для которых соблюдается соотношение Они дают начало ветвям Р и 7 , но ветвь Q отсутствует, так как переходы с А/=0 запрещены. Возвращаясь к спектру комбинационного рассеяния, будем считать молекулу в нижнем энергетическом состоянии вра-щательно возбужденной до гипотетического состояния с, соответствующего переходу А7=+ 1. Из этого состояния возможны переходы с А/= 1 отсюда [c.431]

    Полоса, относящаяся к водороду при 8 = 0,2, была изучена также при помощи спектрометра с дифракционной решеткой, и было найдено, что ее оптическая плотность равна 0,1, а полуширина составляет 21 см (рис. 10). Кондон [134] показал, что инфракрасные спектры индуцируются, по-видимому, высокими электрическими полями и что правила отбора для таких спектров должны быть такими же, как правила отбора для спектров комбинационного рассеяния. Кроме того, было сделано предположение, что интенсивность таких индуцированных полос пропорциональна квадрату поля. Эти предсказания были подтверждены Кроуфордом и Деггом [135], которые измерили [c.279]

    Таким образом, сравнительное изучение спектров поглощения обычного и дейтерированных соединений ж-ксилола при 20°К так же, как и исследование дейте-роизотопов других гомологов бензола [15, 16], позволяет заключить, что частичная замена атомов водорода молекул алкилбензолов на дейтерий не приводит к существенному изменению правил отбора для переходов под влиянием света. Несмотря на то, что в рассмотренных дей-теросоединениях ж-ксилола симметрия молекул не изменяется по сравнению с молекулой обычного ж-ксилола, сохранение правил отбора следует связывать. [c.221]

    Нарушения правил отбора в инфракрасных спектрах наблюдались также при адсорбции молекул бензола и его производных на ионных кристаллах [69]. В спектрах комбинационного рассеяния адсорбированных молекул, вследствие искажения электронной структуры, удается наблюдать такие полосы поглощения, которые обычно активны только в инфракрасных спектрах [78]. На основе измерений интенсивности полосы поглощения адсорбированных молекул водорода, появляющейся в спектре вследствие нарушения правил отбор а, оказалось возможным рассчитать градиент потенциала на поверхности пористого стекла [76]. [c.57]

    В последнее время широко распространилось определение строения сложных неорганических молекул при помощи инфракрасных спектров. Наблюдаемый спектр сравнивают со спектром, рассчитанным для принятой модели с применением математически (на основании теории групп) выведенных правил отбора (т. е. это метод проб и ошибок, ср. с разд. 6.1—6.3). Метод инфракрасной спектроскопии применяли, в частности, для определения строения гидридов бора (разд. 2.5), окислов азота, межгалогенных соединений, изомеров координационных соединений и карбонилов металлов. Так, инфракрасный спектр диборана (ВгНб) состоит из восьми полос, причем все они, по-видимому, основные. Если в структуре имеются мостиковые атомы водорода, то правила отбора предсказывают восемь частот колебаний, активных в инфракрасной области. Аналогичные исследования подтвердили, что в некоторых полиядерных карбонилах имеется два типа групп СО концевые карбонильные группы, поглощающие примерно при 2000 и мостиковые карбонильные группы, которые поглощают при ---1800 сж" . На этом основании Ре2(С0)э — карбонил такого типа — имеет структуру, приведенную на рис. 6.17. [c.213]

    ННРН — новый интересный способ определения колебаний с участием водорода. Вследствие иных правил отбора для рассеяния нейтронов колебания с участием водорода проявляются с сравнительно гораздо большей интенсивностью, чем в обычном ИК-спектре. Рассеяние нейтронов аналогично эффекту комбинационного рассеяния, а интенсивность его пропорциональна квадрату ампли- [c.102]


Смотреть страницы где упоминается термин Правила отбора в спектре водород: [c.432]    [c.101]    [c.65]    [c.276]    [c.238]    [c.148]   
Введение в теорию атомных спектров (1963) -- [ c.21 , c.30 ]




ПОИСК





Смотрите так же термины и статьи:

Правила отбора

Правила отбора в спектре водород компонент мультиплета

Спектры водорода



© 2024 chem21.info Реклама на сайте