Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экструзия поливинилхлорида

    Регулирование и замер давления. При переработке полиолефинов и полистиролов в качестве регуляторов давления могут использоваться обычные клапаны поршневого типа со сферическим наконечником. Более сложные конструкции клапанов следует применять при экструзии поливинилхлорида, так как в этом случае необходимо избегать [c.226]

    Винипласт получают термической пластикацией смеси поливинилхлорида со стабилизаторами и смазывающими веществами с добавкой красителя или пигмента и без них путем вальцевания и экструзии. Производство листового винипласта методом [c.29]


    Методом экструзии (выдавливания) из поливинилхлорида можно получать различные строительные изделия плинтусы, карнизы, поручни, дверные ручки и т. д. В строительных целях употребляется как пластифицированный, так и непластифицированный поли- [c.416]

    Пластифицированный поливинилхлорид легко перерабатывается каландрированием (производство пленок), прессованием и выдавливанием с помощью гидравлических или червячных прессов. Последний способ (называемый также экструзией, или шприцеванием) широко применяется в производстве проводов и кабелей. Технология наложения изоляции шприцеванием с помощью червячных прессов наиболее прогрессивна, так как осуществляется при больших скоростях и по существу состоит из одной основной операции нет таких дополнительных сложных операций, как, например, вулканизация при наложении резиновой изоляции, сушка и пропитка при изоляции силовых кабелей бумажными лентами и др. Благодаря этому имеются широкие возможности для организации поточного производства на кабельных заводах. Технологические преимущества наряду с ценными свойствами обусловили большое применение поливинилхлоридных покрытий. [c.137]

    Кабельный пластикат получают экструзионным и более старым вальцевым способом. Экструзионный способ включает следующие операции просеивание поливинилхлорида и других порошкообразных компонентов, смешение, экструзия. Рецептура пластиката зависит от назначения кабеля (внутренняя проводка, [c.106]

    Строго говоря, это деление в значительной степени условно стереорегулярные каучуки (НК, СКИ, СКД), бутилкаучук, поли-хлоропрен, способные частично (до 15—20%) кристаллизоваться [5—8], органические стекла (полистирол, поливинилхлорид, полиакрилаты) могут быть сильно ориентированы и получены в виде пленок и волокон, а такие волокнообразующие полимеры, как нейлон или капрон, могут использоваться для получения массивных изделий путем экструзии и литья под давлением [9—13]. [c.9]

    Листы из непластифицированного поливинилхлорида (винипласт листовой) (ГОСТ 9639—71). Изготавливается прессованием пленок или экструзией. [c.57]

    Проверку полученных зависимостей проводили, обрабатывая экспериментальные данные, полученные при экструзии полиэтилена и поливинилхлорида в экструдерах с червяками диаметром 50 и 63 мм. Вязкость полимера рассчитывалась при средних значениях скорости сдвига и температуры в пристенном слое расплава. [c.252]


    Полученная зависимость носит довольно общий характер — на рис. V.61 представлены результаты исследования экструзии на четырех различных по конструкции червяках для двух совершенно различных материалов полиэтилен высокого давления (Хд = 0,34 п = 3 й — 0,0108 и поливинилхлорид Xq = 0,416 п = 3,5 Ь = = 0,03). [c.324]

Рис. VIп. 67. Сопоставление средней амплитуды случайных пульсаций темпера-ауры с расчетным значением критерия устойчивости (относительная скорость пульсации производительности) приведены экспериментальные данные, полученные при экструзии полиэтилена низкой плотности (О) и поливинилхлорида ( ). Рис. VIп. 67. Сопоставление <a href="/info/249714">средней амплитуды</a> случайных пульсаций темпера-ауры с <a href="/info/579309">расчетным значением</a> <a href="/info/64916">критерия устойчивости</a> (<a href="/info/318155">относительная скорость пульсации производительности</a>) приведены <a href="/info/304050">экспериментальные данные</a>, полученные при экструзии полиэтилена <a href="/info/31598">низкой плотности</a> (О) и поливинилхлорида ( ).
    Энергия активации показывает, насколько сильно вязкость зависит от температуры. Чем больше энергия активации, тем сильнее снижается вязкость с ростом температуры. Это значит, что с ростом температуры у поливинилхлорида быстрее снижается вязкость, чем у полиэтилена. Но при любом значении энергии активации температура — мошное средство влияния на вязкость расплава даже у полиэтилена вязкость расплава снижается почти в 10 раз при повышении температуры на 60—80° С. Поэтому при переработке расплавов полимеров стремятся повышать темпе ратуру насколько это возможно, Предел здесь определяется способностью полимера к термодеструкции, поэтому широко развиты научно-исследовательские работы по подбору наиболее эффективных стабилизаторов, способных предотвратить термодеструкцию и обеспечить переработку, в особенности экструзию, при максимально высоких температурах. [c.135]

    ХПЭ-эластомеры представляют интерес как немигрирующие огнестойкие эластификаторы, повышающие ударную прочность многих термопластов. Наиболее широко в пром-сти применяют композиции поливинилхлорида и 12—14% ХПЭ с мол, массой (200—500)-10 , содержанием хлора 40%, вязкостью по Муни ок. 90. Введение ХПЭ-эластомера облегчает переработку композиций при экструзии, понижает темп-ру изготовления изделий, уменьшает их усадку. Атмосферо- и химстойкость таких композиций, используемых при изготовлении листов, труб, емкостей для транспортировки конц. к-т (напр., 93%-ной серной), изоляции кабелей, устройства водостоков, производства строительных панелей и др., значительно выше, чем композиций, содержащих в качестве эластификаторов непредельные каучуки, напр, бутадиен-нитрильные. В такие композиции можно вводить большие количества наполнителей, повышая т. обр. эксплуатационные свойства изделий и снижая их стоимость. Из композиций ХПЭ с поливинилхлоридом и сополимером акрилонитрил — бутадиен — стирол (сополимер АБС) изготовляют гибкие и износостойкие каландрованные листы. [c.12]

    Большинство исследований посвящено разработке процесса экструзии поливинилхлорида с плотностью около 700 кг/м , равной примерно половине плотности невспененного ПВХ. Экструдированный поливинилхлорид напоминает древесину по способности крепиться с помощью гвоздей и шурупов и по своей текстуре после окраски. Как и в случае других жестких пенопластов жесткость вспененного ПВХ на единицу массы выше, чем невспененного материала. Это означает, что, например, при окантовке заданная жесткость достигается при использовании меньшего количества материала или при одинаковом количестве материала за счет увеличения толщины окантовки получается гораздо большая жесткость по сравнению с монолитным материалом. Следовательно, за эту же цену можно получить улучшенную окантовку, например стола, или ту же окантовку за меньшую цену. Кроме того, помимо чисто экономических соображений при этом может быть улучшен эстетический вид изделий. [c.448]

    Изготавливаться оболочка может, в частности, методом экструзии из [юлимерных материа юв, например, из поливинилхлорида (ПВХ). Такие оболочки будут иметь длительный гарантированный срок эксплуатации, обладают хорошей коррозионной стойкостью.[36, 39, 40] [c.41]

    Кабели со слоистой оболочкой имеют жилы с полимерной изоляцией. В качестве полимерного материала может быть применен сплошной или ячеистый полиэтилен. Ячеистый (микропористый) полиэтилен представляет собой вспененный полиэтиленовый материал, имеющий другие электрические свойства, чем сплошной полиэтилен. Поры, образующиеся при вспенивании, иногда заполняют пластичным нефтепродуктом для предотвращения проникновения влаги и недопущения продольной во-допроницаемости. Эту конструкцию обматывают полимерными лентами и металлической лентой для экранирования. Лента может быть алюминиевой или медной она имеет полимерное покрытие. На металлический экран дополнительно наносят оболочку и защитное покрытие из полиэтилена методом экструзии. Кабели почтового ведомства ФРГ с полимерным покрытием снабжаются тисненой маркировкой. В отличие от поливинилхлорида на полиэтилене можно выполнять только выпуклое тиснение, поскольку выдавливание углублений приводит к возникновению внутренних напряжений, и материал может разрушиться в результате коррозионного растрескивания под напряжением. [c.300]


    Современные гетерогенные топлива (табл. 167) образуют большое я разнообразное семейство. Размеры зарядов изменяются от маленьких, применяемых в газогенераторах, до очень больших, используемых в стартовых двигателях межконтинентальных баллистических ракет. Малые гранулы можно получать путем формования под давлением, экструзии или разливки, а большие заряды получают литьем. Гранулы могут быть загружены в патроны или же уложены в ящики (литье на месте). В общем случае гетерогенное топливо представляет собой твердый окислитель и твердое горючее, помещенные в полимерное связующее. Твердые вещества составляют до 88 % массы такого топлива. В качестве связующих могут использоваться линейные полимеры (например, поливинилхлорид или ацетат целлюлозы) или сшитые каучуки (уретанм и полибутадиены, вулканизированные на месте). Могут присутствовать также другие добавки, изменяющие баллистические механические свойства, температуру пламени или позволяющие добиться некоторых специальных эффектов. Все гетерогенные топлива содержат стабилизаторы и антиоксиданты или другие вещества, ингибирующие биологическое разрущение. Подобно двухкомпонентным топливам, композиты поглощают воду до установления равновесия. Первый — обратимый — эффект, связанный с поглощением воды, состоит в ухудшении механических свойств материала. Последующие — вымывание, а затем и гидролиз, коррозия, разложение и окисление ингредиентов — приводят к необратимым изменениям. [c.495]

    ПЛЕНКИ ПОЛИМЕРНЫЕ, имеют толщину от неск. мкм до 0,25 мм. В зависимости от метода и условий получения м. б. неориентированными (изотропными) и ориентированными. Получ. след, способами 1) экструзией расплавов полимеров (полистирола, полиэтилена, полипропилена, хлориров. полиолефинов и других полимеров, не подвергаюптхся деструкции при переходе в вязкотекучее состояние) через фильеры со щелевыми или кольцевыми отверстиями при этом в первом случае из фильеры выходит изотропная лента бесконечной длины, к-рую вытягивают в продольном и (или) поперечном направлениях, во втором — рукав, к-рый раздувают сжатым воздухом (плоскостная ориентация) 2) из р-ров полимеров (напр., эфиров целлюлозы, гл. обр. ацетатов), к-рые через фильеру наносят на движущуюся ленту или барабан (сухое формование) либо направляют в осадит, ванну (мокрое формование) структуру и св-ва пленок регулируют скоростью испарения р-рителя, составом и т-рой ванны сформованную пленку часто пластифицируют, а затем высушивают 3) каландрованием пластифицированных полимеров (главным образом поливинилхлорида). [c.448]

    Основным методом изготовления выдувной тары из полиэтилена высокой и низкой плотности, попипропилена, полистирола, твердого и мягкого (пластифицированного) поливинилхлорида, ацетата целлюлозы, полиамида и различных сополимеров является экструзия с раздувом, т.е, выдувное формование. Данный способ основан на раздуве нагретой заготовки кз термопласта, помешенной в форму определенного объема и конфигурации. Раздув разогретых заготовок производится обычно сжатым воздухом, после раздува отформованные изделия охлаждают. [c.167]

    Получение тонких термопластичных пленок экструзией с раздувом находит широкое применение при переработке полимеров. Этим методом за рубежом производят большую часть пленок из полиоле-финов, поливинилхлорида и поливинилиденхлорида. Этим способом получают рукавные двухосно-ориентированные ПВХ пленки, физикомеханические характеристики которых превосходят показатели плоских пленок [7,8], [c.242]

    Гранулы на основе поливинилхлорида для изготовления труб типа ПВХ-60 (ТУ 6-01-801—73). Гранулят представляет собой композицию, полученную смешением и последующим гранулированием 100 вес. ч. ПВХ-С63Ж, 1,3—1,5 вес. ч. двухосновного стеарата свинца, 1,5—2,0 вес. ч. трехосновного сульфата свинца, 0,3—0,5 вес. ч. стеарата кальция и 5 вес. ч. стеарина. Гранулят перерабатывают в трубы методом экструзии. [c.58]

    Повышение температуры переработки является обш,епринятым методом снижения вязкости расплава, обеспечивая возможность осуществления высокоскоростных процессов, в том числе литье под давлением, экструзию или формование изделий из жесткого поливинилхлорида методом раздува. Однако при повышенных температурах ПВХ обладает низкой термической стабильностью, что приводит к изменению цвета и ухудшению ряда свойств изделий. Деструкция ПВХ, происходяшая при повышенных температурах, является результатом термического и термоокислительного дегидрохлорирования. Для того, чтобы предотвратить или замедлить инициирование и развитие процесса дегидрохлорирования, а также для того, чтобы связать выделяющийся из полимера хлористый водород, в ПВХ [c.237]

    Полученная зависимость носит довольно общий характер на рис. VIII.67 представлены результаты исследования экструзии на четырех различных по конструкции червяках для двух совершенно различных материалов — полиэтилен низкой плотности (до = 0,34 rt = 3 — 0,0108) и поливинилхлорид но = 0,416 п = 3,5 Ь = = 0,03). Из представленных данных следует, что при необходимости ограничить амплитуду пульсаций температуры каким-либо конкретным значением [например, А(Г) 1 К] следует вводить ограничения на величину Л (Q) (которая в этом случае не должна превышать 0,063). [c.355]

    Представляет интерес поведение поливинилхлорида при температуре экструзии. Термические реакции приводят к образованию сшитого полимера с разветвленной прострапственной структурой, которая одновременно деструктируется под механическим воздействием. Каргин и Слонимский с сотр. [44] назвали это явление химическим течением и высказали предположение, что этот процесс необходимо учитывать при выборе оптимальных условий обработки и предсказании свойств образующегося полимера [44]. [c.491]

    Зависимость механич. свойств смеси от размера частиц изучена слабо. Установлено только, что прочность смеси мало изменяется при изменении размера частиц в пределах от 1 до 50 мкм. По-разному влияет на свойства смесей и анизометричность частиц дисперсной фазы. Обычно в смеси полимеров, снятой с вальцев или с экструдера, прочность в направлении ориентации иа 20—100% выше, чем в перпендикулярном направлении. Анизометричные частицы каучука в смесях с поливинилхлоридом обеспечивают более высокую ударную прочность, чем сферические. Однако существуют и др. двухфазные системы, напр, ударопрочный полистирол, в к-рых ударная вязкость после экструзии в результате ориентации частиц каучука снижается. [c.219]

    Экструзией гранул или порошкообразной смеси получают трубы, профилированные изделия, сварочный ируток и листовой материал, экструзией с раздувом — полые изделия. Гранулы перерабатывают на одношнековых экструдерах с переменной глубиной нарезки, имеющих стенень сжатия 1,5—2,0 н отношепио длины к диаметру шнека не меньше 15—20. При переработке порошкообразных смесей применяют экструдеры с зоной отсоса отношение длины к диаметру шпека 20—24, стенень сжатия до 3,5, темн-ра в корпусе экструдера 165—190°С, в головке 190—205°С экструдат нуждается в иитенсивном охлаждении. Экструзия В. осложняется близостью темп-р размягчения и разложения поливинилхлорида. [c.233]

    При механич. воздействии на П. (перетирании, вальцевании и др.) образуются макрорадикалы, рекомбинация к-рых приводит к синтезу блоксополимеров, а при протекании реакции передачи цепи — привитых сополимеров и интерполимеров (механохимич. метод получения привитых и блоксополимеров). Если механич. разрыв макромолекул происходит в среде мономера, то возникающие макрорадикалы инициируют полимеризацию этого мономера. Эффективность механодеструкции П. возрастает при понижении темп-ры, особенно ниже темп-ры стеклования (70—80 °С). Процесс ингибируется кислородом и присутствующими в зоне реакции ингибиторами радикальных реакций. Получены смеси привитых сополимеров, блоксополимеров и интерполимеров поливинилхлорида с новолачными феноло-формальдегидными смолами, полиметилметакрилатом и полистиролом (вальцевание), с хлоронреновым каучуком (экструзия). При пластикации поливинилхлорида в смеси с малеиновым ангидридом и др. мономерами, а также при вибропомоле полиметилметакрилата или полиакрилонитрила с В. получены только привитые сополимеры, а при использовании электрогидравлич. эффекта (импульсы давления, возникающие при высоковольтных искровых разрядах в р-ре полимера) — привитые и блоксополимеры, напр, поливинилхлорида с метилметакрилатом или этилцеллюлозой (в р-ре циклогексанона).  [c.226]

    К важным характеристикам Э., помимо рассмотренных выше конструктивных особенностей червяка, относится размер кольцевого зазора между гребнем червяка и внутренней поверхностью цилиндра. При большем зазоре повышается эффективность гомогенизации, но уменьшается объемная скорость подачи материала вследствие увеличения его потока утечек. При постоянном диаметре червяка кольцевой зазор в Э. с червяками большого диаметра равен обычно 0,002 В, с червяками малого диаметра — 0,005 В. При экструзии материалов, расплавы к-рых имеют низкую вязкость (напр., полиамидов или нек-рых марок полиэтилена), зазор не должен превышать 0,1 мм. Для переработки большинства аморфных термопластов, плавящихся в широком интервале темп-р, применяют Э. с универсальным червяком, имеющим длинную зону сжатия (5—7 В) для экструзии кристаллич. термопластов — машины с короткой зоной сжатия (0,5—1,0 В). При переработке нетермостабильных материалов, напр, жесткого поливинилхлорида, используют Э. с червяком, глубина винтового канала в к-ром уменьшается плавно (отсутствие зоны сжатия позволяет предотвратить деструкцию полимера). [c.461]


Библиография для Экструзия поливинилхлорида: [c.415]   
Смотреть страницы где упоминается термин Экструзия поливинилхлорида: [c.175]    [c.182]    [c.98]    [c.138]    [c.572]    [c.324]    [c.355]    [c.138]    [c.278]    [c.12]    [c.321]    [c.465]    [c.229]    [c.294]    [c.29]    [c.276]    [c.321]   
Экструзия пластических масс (1970) -- [ c.152 , c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Пластифицированный поливинилхлорид для переработки экструзией. Я Линдеман

Поливинилхлорид



© 2025 chem21.info Реклама на сайте