Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость и форма частиц

    Асфальты, получаемые из крекинг-остатков [114] (остатки термического крекинга), иногда могут быть представлены как асфальты другого типа. Они напоминают каменноугольные смолы, хотя по характеру являются более ароматическими, дают большое изменение консистенции с температурой и быстро окисляются при выветривании. Как докладывалось, они дают хорошо формующиеся частицы и являются эффективными для дорожных покрытий. Это частично обусловлено низкой вязкостью при плавлении, что делает возможным хорошее распространение. Сырье, из которого они были получены, исчезает, так как объем термического крекирования резко сокращается. Очень важен метод получения асфальтов, но особенно важен тип нефти как определяющий конечные свойства. Из типичных нефтей получаются продукты со следующими свойствами  [c.552]


    Скорость диффузии прн постоянных температуре и вязкости среды зависит от величины н формы частиц. Медленность диффузии является признаком, отличающим коллоидные системы от истинных растворов низкомолекулярных веществ. [c.319]

    Экспериментальные исследования дисперсных систем с твердыми частицами, выполненные в широком диапазоне объемных концентраций (до с = 0,5—0,6) при различных формах частиц показали, что эффективная вязкость таких систем может быть выражена формулой [c.48]

    Пример 6-15. Определить сопротивление слоя катализатора высотой Н — 7 м в аппарате диаметром D — 2,5 м. Количество проходящего через аппарат газа V = 8500 м /ч, плотность газа р = 0,45 кг/м , вязкость газа (1 = 0,294-10- н-сек/м (0,0294 спз). Удельная поверхность катализатора / = 415 м 1м , свободный объем е = 0,43, число частиц катализатора в 1 слоя т = 10 . Найти также коэффициент формы частиц катализатора и эквивалентный диаметр каналов в его слое. [c.178]

    В зоне АБ состав дисперсионной среды, ее растворяющая способность, концентрация твердой фазы, соотношение в твердой фазе парафинов и асфальтенов так же, как размер и форма частиц дисперсной фазы, оказывают влияние на кинетику структурирования системы, ее структурно-механическую прочность и устойчивость. При сохранении в этой зоне постоянства структурной вязкости устойчивость системы не изменяется. При повышении температуры системы свойства геля изменяются, изменяется его механическая прочность н система приобретает текучие свойства прн температуре, соответствующей температуре застывания нефтепродукта (точка Б) гель переходит в состояние аномальной жидкости. [c.37]

    Форма частиц наполнителя влияет не только на значение 6, но и на прочность углеродонаполненной системы. Известно, что при введении в связующее наполнителя вязкость УНС изменяется в зависимости не только от количества наполнителя, но и от формы его частиц. Вязкость системы тем больше, чем меньше форма наполнителя отклоняется от шарообразной. При волокнистом наполнителе (коксе игольчатой формы) можно получать электродные массы одинаковой пластичности при меньшем содержании коксов, чем в случае частиц нефтяных коксов шарообразной формы. [c.83]


    Движению осаждающихся под действием собственного веса частиц препятствуют подъемная сила внешней фазы и сопротивление среды. Подъемная сила равна весу объема внешней среды, вытесняемой частицами в процессе движения. Сопротивление среды является результатом ускоренного движения частиц и зависит от следующих факторов 1) скорости движения частиц в данный момент 2) размеров и формы частиц 3) вязкости внешней фазы. [c.249]

    Осмотическое давление гидрозоля золота (форма частиц сферическая) с концентрацией 2 г/л при 293 К равно 3,74 Па. Рассчитайте коэффициент диффузии частиц гидрозоля при тех же условиях, если плотность золота 19,3 г/см , а вязкость дисперсионной среды 1 10 Па - с. [c.107]

    На вязкость смазок наряду с вязкостью дисперсионной среды влияют природа й концентрация загустителя (с увеличением концентрации и степени дисперсности загустителя вязкость смазки повышается), технология приготовления смазок и другие факторы, определяющие размер и форму частиц загустителя. Для определения вязкости смазок используют капиллярные (АКВ-2, АКВ-4) и ротационные (ПВР-1) вискозиметры. [c.360]

    Химический состав водной фазы (дисперсионной среды) синтетических латексов сравнительно прост, а дисперсная фаза обычно состоит из достаточно инертного в химическом отношении и в большинстве случаев гидрофобного вещества. Поэтому едва ли можно ожидать, что при астабилизации этих систем на поверхности частиц могут происходить какие-нибудь реакции, за исключением тех хорошо изученных реакций, в которых участвует стабилизатор. У латексов с гидрофобным полимером сольватация дисперсной фазы, которая может влиять на устойчивость коллоидной системы, безусловно, отсутствует. Сферическая или близкая к сферической форма частиц устраняет влияние на их взаимодействие неровностей поверхности и позволяет считать, что при столкновении двух глобул они ведут себя как два идеальных шарика. Дисперсная фаза латексов, как правило, является диэлектриком, и при электрофорезе можно не учитывать поправку на проводимость частиц. Большая вязкость полимеров позволяет рассматривать латексные глобулы как твердые частицы. Это значительно упрощает трактовку экспериментальных результатов, так как такие частицы не могут деформироваться под влиянием движения окружающей жидкости. Наконец, весьма существенно, что синтетические латексы можно получать с применением почти любого эмульгатора. Это представляет огромное удобство для экспериментатора, изучающего влияние на свойства латекса природы стабилизующих веществ. [c.382]

    Вычислить электрофоретическую скорость частиц глины если -потенциал частиц 48,8 мВ. Разность потенциалов между электродами равна 220 В, а расстояние между ними 44 см, вязкость 10 Па-с, диэлектрическая ироницаемость 81. Форма частиц сферическая. [c.171]

    Вычислить градиент потенциала, если -потенциал частиц золя Ре(ОН)з равен 52,5 мВ, электрофоретическая скорость частиц 3,74-10 см/с. Вязкость среды 1,005-10 Па-с, а диэлектрическая проницаемость 81. Форма частиц цилиндрическая. [c.171]

    Электрофорез золя Ре(ОН)з происходил при следующих условиях градиент потенциала 500 В/м, перемещение частиц за 10 мин на 12 мм, диэлектрическая ироницаемость равна 81, вязкость— 1-10 Па-с. Вычислить -потенциал частиц золя. Форма частиц сферическая. [c.171]

    Вычислить -потенциал частиц глины, если при градиенте потенциала 10 В/см частицы проходят 5 делений шкалы за 5 с (60 делениям шкалы соответствует 1 мм). Вязкость среды 0,001 Па-с, диэлектрическая проницаемость равна 81. Форма частиц сферическая. [c.171]

    Аналогичные структурные сетки могут образовываться и в растворах некоторых коллоидов, имеющих анизометрические (т. е. имеющие неодинаковые длину и поперечные размеры) частицы. Вытянутая, палочкообразная форма частиц обусловливает наибольшую вязкость. [c.192]

    Эти законы перестают действовать при турбулентном течении. Оба закона применимы для чистых жидкостей, истинных растворов и некоторых коллоидов. В растворах высокомолекулярных веществ обнаруживается аномальная вязкость она очень высока и в противоположность первой группе жидкостей уменьшается с увеличением давления на протекающую жидкость (рис. 99). Большая вязкость этих растворов зависит от степени сродства между молекулами силы сцепления гидрофильных молекул белков и полисахаридов с молекулами воды очень высоки, и вязкость их даже в очень разбавленных растворах также будет высокой. Кроме того, большое значение имеет форма частиц. Если вытянутые частицы располагаются поперек потока, то они оказывают наибольшее сопротивление. При увеличении внешнего давления на жидкость эти частицы ориентируются вдоль потока, в результате вязкость раствора уменьшается. [c.221]


    Аналогичная зависимость вязкости от скорости течения наблюдается у концентрированных эмульсий и суспензий с палочкообразной, эллипсоидной или пластинчатой формами частиц. Капельки дисперсной фазы в эмульсиях с возрастанием приложенного давления и увеличением скорости истечения удлиняются, превраш,аясь из шариков в эллипсоиды. Это облегчает истечение и ведет к понижению вязкости. [c.383]

    Теоретические вычисления, проведенные Куном, Симха и другими исследователями с использованием в качестве моделей частиц самой разнообразной -формы, весьма сложны и не всегда убедительны. Поэтому до сих пор еще нет о(]щей теории зависимости вязкости коллоидных систем от формы частиц. [c.337]

    Среднее удельное объемное сопротивление осадка = (4 . .. 45) 10 м зависит от гранулометрического состава твердой фазы, вязкости жидкой фазы, угловой скорости ротора, формы частиц, деформируемости осадка и т. п. меньшие значения соответствуют кристаллическим продуктам, большие — суспензиям с мелкоизмель-ченной твердой фазой (гидроокиси металлов, полимеры, пастообразные материалы и т. п.). Отношение и объемов осадка и суспензии можно принять равным объемной концентрации суспензии. Значения предпочтительно определять опытным путем. [c.321]

    В процессе депарафинизации дизельного топлива кристаллическим карбамидом образуется суспензия комплекса парафина и карбамида в смеси дизельного топлива и бензина. После разложения и отделения депарафйната комплекса состав суспенаии изменяется,и она представляет собой в основном смесь карбамида, бензина и парафина. Для стабильного протекания карбамидной депарафинизации, достижения необходимой ее глубины, эффективного разделения суспензии на твердую и жидкую фазы, транспортирования и промывки осадков изменение качества суспензии следует допускать лишь в небольших пределах. Качество суспензии определяется физикохимическими и физико-механическими свойствами составом компонентов, плотностью твердой и жидкой з, гранулометрическим сост ом твердой фазы, формой частиц, вязкостью, липкостью, статическим напряжением сдвига (СНС) твердой фазы и др. [c.77]

    В. Расчетные формулы. Условие, при котором максимален коэффициент теплоотдачи от слоя к поверхности. Скорость ожижающего газа, обеспечивающая максимальный коэффициент теплоотдачи от слоя к стенке, является функцией среднего размера частиц. Она лучше всего выражается в виде произведения коэф<1)ициента на минимальную скорость ожижения этот коэффициент уменьшается, когда средний диаметр частицы растет. Из-за трудностей в учете формы частиц и ее влияния, в особенности на пористость слоя, корреляции, предлагаемые в [1—4], для расчета минимальной скорости ожижения ненадежны. Следовательно, лучше непосредственно измерять минимальную скорость ожижения, но это не всегда возможно при высоких рабочих температурах и давлениях. В этих условиях рекомендуется интерполяционная форма зависимости [13 . Например, найдено, что она удовлетворительно учитывает влияние изменения вязкости и плотности газа с температурой [7] в предположении, что значение пористости при минимальном ожижении равно значенню, которое используется в корреляции для температурных условий окружающей среды, когда можно легко определить. Рекомендуемая формула принимает вид [c.448]

    Формула Эйнштейна не учитывает наличия у частиц поверхностных слоев, таких, как адсорбционные, сольватные и двойные электрические. Увеличение вязкости, обусловленное наличием таких слоев, называют адсорбционным, сольватным и электровязкост-ным эффектами. Та-к как поверхностные слои не изменяют формы частиц, то их влияние можно учесть, увеличив объемной долю на объем слоев. Такой подход иногда используют для определения толщины поверхностных слоев. Если объемную долю слоев обозначить через фй, а ф /ф = К, то [c.371]

    Рассчитайте толщину гидратных оболочек S золя АЬОз, если дологическими измерениями установлено, что при К01н1ентрании 12 % (масс.) золь является ньютоновской жидкостью с вязкостью г] = 1,18-10- Па-с. Радиус частиц золя г равен Юнм, Плотность частиц дисперсной фазы р = 4 г/см , дисперсионной среды ро = 1 г/см . Вязкость дисперсионной среды т]о = ЫО Па-с. Коэффициент формы частиц а = 2,5. [c.205]

    Т1-Т1Д<=(1 + кСдф), где т),т1дс - вязкость системы и чистой дисперсионной среды соответственно, к - коэффициент, зависящий от формы частиц (для сферических частиц к=2.5), [c.116]

    Влияние анизодиаметричности частиц. При палочкообразной, эллипсоидной или пластинчатой форме частиц суспензии вязкость системы всегда больше, чем должна быть согласно уравнению Эйнштейна. Причина этого заключается в том, что жидкость, попадающая в объем (эллипсоид вращения), образующийся вокруг нешарообразных частиц, находящихся в интенсивном броуновском движении, становится как бы связанной с частицей. В результате [c.336]

    За последние примерно десять лет, благодаря применению методов оптической и электронной микроскопии высокого разрешения, были достигнуты определенные успехи в изучении механизма процессов кокеообразования при низкотемпературной карбонизации различ-. , ах пеков. Исследованиями Брукса и Тейлора [39-42], предложившими гипотезу процесса кокеообразования через мезофазные превращения коксуемого сырья, а также других авторов [43-54] было показано, что начальной стадией формирования микроструктуры коксов является образование частиц мезофазы - слоистых жидких кристаллов, состоящих из ароматических макромолекул и обладающих анизотропией свойств. Считается, что первые сферы мезофазы размерами 0,I мк появляются в зависимости ог типа коксуемого сырья при температурах 360-520°С. За счет слияния соприкасающихся сфер происходит укрупнение частиц. Скорость образования таких частиц определяется продолжительностью и температурой обработки, а также вязкостью изотропной массы. Процесс укрупнения сфер и образования мезофаз-ной матрицы сопровождается деформациями, приводящими к изменению формы частиц мезофазы. Деформированные частицы мезофазы в дальнейшем образуют жесткий коксовый каркас, состоящий из графитоподобных слоев. В зтой стадии пластичность материала и подвижность Шхромолекул резко снижаются, что в условиях продолжающихся химических превращений, сопровождающихся выходом летучих и усадками, приводит к образованию микротрещин и пор. Воздействием на процесс формирования мезофазы можно получить коксы волокнистой (игольчатой), тонкой-мозаичной (точечной), сферолитовой и грубой мозаичной текстур, существенно различающихся физико-химическими, т.е. эксплуатационными свойствами [55-59]. [c.9]


Смотреть страницы где упоминается термин Вязкость и форма частиц: [c.194]    [c.321]    [c.83]    [c.87]    [c.206]    [c.164]    [c.173]    [c.171]    [c.252]    [c.442]    [c.385]    [c.406]    [c.192]    [c.273]    [c.292]    [c.211]    [c.68]   
Явления переноса в водных растворах (1976) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Частицы форма

вязкость частиц



© 2025 chem21.info Реклама на сайте