Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратации воздействие на концентрацию

    Число молекул воды, гидратирующих данный ион, не является строго определенным, так как трудно четко отграничить молекулы, гидратирующие ионы, от остальных молекул. Притяжение молекул ВОДЬ к иону быстро уменьшается по мере увеличения расстояния между ними. Первый слой полярных молекул растворителя около иона более прочно связан электростатическими силами с ионом, чем последующие слои. Таким образом, гидратация влияет на состояние всех молекул растворителя и чем выше концентрация ионов в растворе, тем сильнее их воздействие на полярные молекулы растворителя. [c.13]


    Фильтрационный эффект (увеличение концентрации перед мембраной и уменьшение на выходе) определяется тем, что часть сечения пор мембраны занята связанной водой, теряющей частично растворяющую способность. При диаметре поры, равном двойной толщине слоя связанной воды, через мембрану будет проходить чистая вода и гидратация после появления слоя новообразований будет протекать не при воздействии раствора, а под действием воды. [c.87]

    Как видно из рис. 3.11, с увеличением содержания мочевины в растворе абсолютные значения 5 возрастают при высоких температурах и уменьшаются в интервале 278 298 К. Особенно заметно влияние добавок растворенного вещества на сжимаемость системы проявляется в области т.м.п. изотопомеров воды, что прежде всего свидетельствует о сходстве воздействий температуры и концентрации мочевины на структуру гидратного комплекса. Однако, если в первом случае вследствие разрушения исходной структуры воды гидратация мочевины усиливается, то во втором, очевидно, ослабляется из-за уменьшения молярной доли "свободного" растворителя и растущего перекрывания ко-сфер гидратации. Вместе с тем закономерности изменения изотопного эффекта в ф 2 температуры в пределах исследованной области концентраций в целом не отличаются от таковых при бесконечном разведении, т.е. соответствуют приведенной на рис. 3.11 зависимости Д А 2 (Т). [c.156]

    Изменение. состава растворителя может также оказывать влияние на устойчивость комплексов путем воздействия на. сольватацию реагирующих частиц, что проявляется в изменении, ка,к энтальпии, так. и энтропия реакции комплексообразования. Как по-.казывают экспериментальные результаты, степень гидратации ионов в присутствии органического растворителя в концентрации до 80% изменяется не намного. Для меньших количеств воды было найдено [4], что изменение устойчивости ко.мплексов пропорционально изменению основности лиганда  [c.151]

    Роль водородных связей в образовании ионных пар. Отклонения электролитической проводимости больших ионов от предельного закона Дебая — Хюккеля — Онзагера, зависимость коэффициента активности и осмотического коэффициента от концентрации и некоторые другие явления указывают на то, что большие ионы не имеют первичной гидратной оболочки и влияние их вторичной гидратации проявляется главным образом в воздействии на структуру прилегающих к ионам слоев воды, вызывающем повышение упорядоченности. Эти ионы, так сказать, гидрофобны, и их структурообразующее влияние на воду тем больше, чем больше их размеры. Как отмечает Даймонд [48а], в растворах больших ионов, не имеющих первичной гидратной оболочки, образование ионных пар облегчается тем, что в добавление к электростатическому притяжению между их зарядами вода вблизи этих ионов проявляет эффект, способствующий усилению взаимной связи гидрофобных ионов благодаря структурированию. Это добавочное действие обусловлено тем, что водородные связи между молекулами воды стремятся усилить взаимодействие между молекулами и снизить искажения структуры воды. Влияние структуры жидкости, облегчающее ионную ассоциацию, отличается от образования ионных пар по Бьерруму, обусловленному одним лишь действием электростатических сил. Это влияние возникает только в жидкостях, для которых характерно об- [c.508]


    При расчете концентрации ионов Н+ по обе стороны границы использовали способы расчета профилей концентрации ионов в граничных слоях и представления об ионном переносе в активном слое мембраны для обратного осмоса. Можно дать следующее объяснение наблюдаемой корреляции е и АрН. Ионы Н+ и ОН оказывают различное структурирующее воздействие на воду причем избыток ионов Н+ упрочняет структуру воды больще, чем избыток ионов ОН-, поскольку обладает большей свободной энергией гидратации. Поэтому при ДрЯ <0 (ионов Н+ больше в порах активного слоя) градиент структурированности воды на границе исходного раствора и мембраны больше, чем при АрН >0 (в порах активного слоя больше ионов ОН-, чем в разделяемом растворе на границе с мембраной). Это, в свою очередь отражается на значении е, связанном с энергией перестройки вторичной гидратной оболочки иона. Более конкретное объяснение, наверное, можно получить из целенаправленных экспериментов по изучению свойств граничных слоев воды на гидрофильных поверхностях в растворах электролитов. [c.128]

    Можно С уверенностью утверждать, что небольшие по размерам двухзарядные ионы Mg + и Са2+ оказывают гораздо более сильное воздействие на окружающую их воду, чем сравнительно крупный однозарядный хлорид-ион. Эти различия выразятся не только в существенном изменении диэлектрической проницаемости воды вблизи катионов Mg + и Са +, что уже само по себе ставит под сомнение возможность применения расчетных формул метода Бейтса — Робинсона (см. разд. 3.2), по и в несомненном нарушении под влиянием катионов исходной структуры воды, в перестройке системы водородных связей, которые, как это теперь общепризнано, носят кооперативный характер. Кроме того, в случае таких сильно гидратирующихся ионов, как Mg + и a +, постулат теории Стокса — Робинсона о постоянстве числа гидратации электролита, вероятно, нарушается уже при сравнительно умеренных концентрациях соответствующей соли. [c.108]

    Изучение воздействия на суспензии глин поля постоянного тока [58] показало, что степень ускорения седиментации частиц под влиянием поля зависит от напряженности электрического поля и гидратации глинистых частиц. Оптимальным условиям воздействия поля отвечают значения ДП, близкие к ДПкр. В 50-х годах ряд работ но структурообразованию дисперсных систем в поле постоянного тока опубликовали Френкель, Гиндин и др. [59]. По Гороновскому [60], коагуляция частиц гидроокисей Л1е-таллов в поле постоянного тока связана со следующими эффектами электрофоретическим переносом частиц и их последующим разряжением на электродах возникновением высоких концентраций коагулирующих ионов коагулирующим действием ионов, переходящих в раствор с электродов взаимной коагуляцией дисперсных частиц с частицами, перезарядившимися на электродах. [c.119]

    Чем больше конечная концентрация раствора, тем меньше изменение энтальпии, связанное с раздвиганием ионов кристалла. Наибольшее значение (Яо—Я р) оно имеет при образовании бесконечно разбавленного раствора [в этом случае (Яо—Я р) = АЯрещ] наименьшее — при образовании насыщенного раствора (Я — Я р)-Таким образом, постепенное уменьшение этой разности с ростом концентрации должно увеличивать экзотермичность интегральной теплоты растворения. Как будет видно дальше, одно это явление, при отсутствии компенсации эндо-эффектами, делало бы ДЯ в случае солей щелочных металлов и галогенов в водных растворах ориентировочно на —(167—293) кДж/моль [—(40—70) ккал/моль] более экзотермичной при переходе от т = О к насыщению. В действительности для этих солей разность (АЯт=о — АЯ,) равна небольшим величинам от —6,7 (—1,6) до +18,0 кДж/моль (+4,3 ккал/моль). Следовательно, экзо-эффект сближения ионов компенсируется большим эндотермическим эффектом. В случае водных растворов сильных электролитов это, в основном, уменьшение гидратации с ростом концентрации ионов. До ГПГ, если принять неизменность координационных чисел п , происходит только ослабление связей ион—вода. Назовем этот процесс энергетичес-койдегидратацией. Именно ею, по-видимому, в основном, объясняется ход кривых АЯ = / т) и дебаевской области (см. с. 119, рис. У.1), где экзотермичность теплот разведения количественно связывается именно с ослаблением интенсивности сольватационного взаимодействия при возрастании концентрации ионов [272]. Известный вклад, разумеется, и здесь вносит изменение структуры воды под воздействием ионов электролита, различным в случаях ионов-ста-билизаторов и ионов-разрушителей этой структуры (см. стр. 115 и гл. VIII). За ГПГ к энергетической присоединяется координационная дегидратация из-за дефицита воды. [c.123]

    Соли должны снижать скорость регенерации и способствовать тому, чтобы поперечное сечение нитей приобретало менее правильную форму. Действие солей обусловливается их влиянием на pH, гидратацией ионов и дегидрирующим и высаливающим воздействием, обычным для солей. При постоянной концентрации серной кислоты такие свойства нитей, как форма поперечного сечения, блеск, сродство к красителям и т. д. меняются в зависимости от концентрации сернокислого натрия. От концентрации сернокислого натрия зависит pH раствора в ванне, а от него [259] в значительной мере зависят физико-химические свойства нитей. Сернокислый цинк влияет на коагуляцию и свойства нитей больше, чем сернокислый натрий. Данилов и Гинце [260] установили, что четыре соли, обычно используемые в прядильных ваннах, можно расположить в следующем порядке, исходя из их возрастающего влияния на замедление скорости разложения и возрастающей способности коагулировать сернокислый натрий, сернокислый магний, сернокислый аммоний, сернокислый цинк. Суммарная активность этих солей почти всегда превышает активность отдельно взятых солей. [c.289]


    Концентрация водородных нонов в окружающей среде оказывает целый ряд прямых и косвенных воздействий на метаболизм, и стабильность клетки. Поэтому было бы слишком большим упрощением считать, что все эти воздействия обусловлены только ионами водорода. Сам по себе ион водорода (Н+) обладает уникальными свойствами, отличающими его от других катионов. Он представляет собой протон, лишенный электронов, В водных растворах он быстро гидратируется и образует ион гидроксония Н3О+. В кислой среде преобладают ионы гидроксония, которые реально существуют в форме гидратированных ионов (НйОг) , (Н70з)+, (Нд04)+ и т. д., причем степень гидратации зависит от концентрации ионов гидроксония и температуры (VanderWerf, [c.331]


Смотреть страницы где упоминается термин Гидратации воздействие на концентрацию: [c.589]    [c.364]    [c.442]    [c.104]    [c.9]    [c.163]   
Явления переноса в водных растворах (1976) -- [ c.487 ]




ПОИСК







© 2025 chem21.info Реклама на сайте