Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратированные ионы

    Гидратированные ионы Ti , Zr + и Hf + вследствие большого заряда в растворах существовать не могут. Поэтому их растворимые производные сильно гидролизуются. Гидролиз протекает с образованием разнообразных многоядерных комплексов. Как первую стадию гидролиза Ti l4 можно рассматривать его координационное насыщение до Ti l4-2H20 с последующим отщеплением молекул НС1  [c.534]

    На основе гидродинамической теории можно рассчитать радиусы мигрирующих иоиов поскольку ири этом используется уравнение Стокса (5.4), они называются стоксовыми радиусами. Стоксо-выс радиусы обычно заметно больше кристаллохимических, иными словами, мигрируют гидратированные ионы. Из уравнения (5.9), вытекающего из гидродинамической теории, можно получить эмпирическое правило Вальдена — Писаржевского, если допустить, что прн изменении температуры или природы растворителя размеры ионов (стоксовы радиусы) остаются постоянными. Обычно это условие не выполняется, чем и объясняется приближенный характер правила Вальдена — Писаржевского. [c.120]


    Окраска комплексных соединений переходных металлов объясняет известный фокус с письмом невидимыми чернилами, приготовленными из СоС12. Если написать что-либо на бумаге бледно-розовым раствором СоС12, текст остается практически неразличимым. Но если затем осторожно нагреть над пламенем свечи бумагу, на ней появляется ярко-синяя надпись. После охлаждения надпись постепенно исчезает. Розовая окраска принадлежит октаэдрически гидратированному иону кобальта, Со(Н20) . Нагревание удаляет из него воду и оставляет синий хлоридный комплекс с тетраэдрической геометрией. Безводное соединение гигроскопично это [c.208]

    Несмотря на свою неполноту, приведенные схемы отражают основные стадии электрохимического выделения кислорода. По I варианту молекулярный кислород образуется за счет рекомбинации его атомов, полученных после разряда одновалентных ионов кислорода 0 , а по варианту И — в результате распада высшего неустойчивого оксида МОж+ , возникшего из низшего устойчивого оксида МОд после разряда на нем ионов 0 . Вариант HI исключает участие в электродном процессе каких бы то ни было заряженных частиц, кроме гидроксил-ионов. Выделение кислорода происходит здесь через промежуточные стадии образования и распада гидроксидов и оксидов металла. В IV варианте непосредственным источником кислорода являются его молекулярные ионы О2 , образовавшиеся из гидратированных ионов 02 -2Н20 после отнятия от них воды. Эти гидратированные ноны кислорода можно рассматривать как отрицательно заряженные бимолекулы пероксида водорода Н2О2 , которые служат промежуточным звеном при анодном выделении кислорода. [c.425]

    Растворение одних и тех же соединений в соответствующих средах усиливает либо их донорную (основную), либо акцепторную (кислотную) функцию. Например, при растворении в воде НС1 и HNO3 образуются гидратированные ионы оксония и соответствующие анионы  [c.132]

    Обратный осмос и ультрафильтрование. Метод основан на разделении растворов фильтрованием через мембраны с диаметром пор 1 нм (обратный осмос) и 5—200 нм (ультрафильтрование). Эти мембраны пропускают молекулы воды и непроницаемы для гидратированных ионов солей или молекул недиссоциированных соединений. От обычного фильтрования такой процесс отличается возможностью отделять частицы меньших размеров. Давление, необходимое для очистки методом обратного осмоса, 6—10 МПа, а для ультрафильтрования 0,1—0,5 МПа. В качестве материала мембран используются ацетатцеллюлоза, полиамиды и другие полимеры толщиной 100—200 нм [5.22, 5.24, 5.55, 5.64]. [c.485]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]


    Здесь в скобках сокращенно указано физическое состояние каждого сорта частиц (тв.-твердое, водн.-гидратированный ион в водном растворе, г.-газ, ж.-жидкость). Уравнение (2-6) указывает, что твердый карбонат кальция реагирует в водном растворе с двумя гидратированными протонами (ионами водорода) с образованием гидратированных ионов кальция, газообразного диоксида углерода и жидкой воды. Хлорид-ионы остаются в результате реакции гидратированными в растворе, и поэтому их можно не указывать в уравнении. Уравнение (2-5), подобно другим полным уравнениям реакции, позволяет определить количество каждого из участвующих в реакции веществ, но ничего не говорит о молекулярном механизме реакции. Уравнение (2-6) дает лучшее описание происходящего на микроскопическом уровне, но менее удобно для подсчета количества веществ, участвующих в реакции. [c.73]

    Испарившиеся п молекул воды реагируют в газовой фазе с ионом, образуя гидратированный ион с радиусом при этом выделяется энергия у. Она слагается из З Нвргии взаимодействия диполей с ионом, энергии притяжения и отталкивания диполей, энергии наведения индуцированных диполей и, наконец, борновской энергии отталкивания. [c.59]

    В промышленности получили распространение процессы, основанные на фильтровании растворов через полупроницаемые перегородки (мембраны). Ультрафильтрование при давлении 0,1— 0,5 МПа обеспечивает отделение частиц размером до 0,5 мкм, а использование обратного осмоса при давлении 3—10 МПа позволяет производить очистку растворителя от частиц, равных диаметру молекул или гидратированных ионов. Качество разделения зависит от природы и концентрации соединений в сточных водах, от температуры, давления и конструкции аппарата, В результате очистки воды получается 5—20 % раствор солей и вода, которая по своим свойствам чаще всего удовлетворяет санитарным и технологическим требованиям [5,22, 5.24, 5.55, 5.64]. [c.475]

    Особенностью сильных электролитов является их полная электролитическая диссоциация в водном растворе, сопровождающаяся образованием гидратированных ионов и ионных пар Последние отличаются от молекул тем, что ионы в них не соприкасаются непосредственно друг с другом, а разделены одним или несколькими слоями молекул воды, образуя с ними гидратные комплексы. [c.105]

    Здесь и далее подразумеваются гидратированные ионы. [c.159]

    Таким образом, каждый гидратированный ион стабилизируется ближайшим окружением зарядов, противоположных по знаку его собственному заряду. Когда кристалл соли растворяется в воде, притяжение между ионами с зарядами противоположного знака в кристалле нарушается. Взамен возникают аналогичные силы притяжения между ионами и гидратирующими их молекулами воды. Растворимость кристаллов солей является [c.209]

    Здесь следует особо отметить, как важно указание в растворе , сделанное выше. Первая энергия ионизации натрия является мерой способности газообразного атома Na терять электрон, образуя газообразный ион. В отличие от этого окислительный потенциал является мерой способности твердого Na терять электрон, образуя гидратированный ион натрия в водном растворе Для большинства химических применений последняя характеристика имеет гораздо более важное значение. В некоторых случаях в результате окисления металла в растворе образуется не гидратированный катион, а оксидный комплекс, например [c.431]

    В—структурная константа мембраны при расчете селективности D—коэффициент диффузии Dam—коэффициент диффузии растворителя в мембране d—диаметр поры мембраны dr.a—диаметр гидратированного иона а—эквивалентный диаметр канала /о— пористость мембраны G—проницаемость мембраны АЯ—теплота гидратации I— ионная сила раствора 1—коэффициент Вант-Гоффа К—степень очистки раствора /Ср—коэффициент разделения к, La, Lp—расход концентрата, исходной жидкости и растворителя соответственно [c.11]

    Каждый из этих металлов имеет способность легко терять электроны и становиться окисленным в растворе. И наоборот, их ионы восстанавливаются с трудом, например ионы калия имеют восстановительный потенциал - 2,92 В. Литий теряет электроны в растворе легче, чем Сз, несмотря на более высокую энергию ионизации Ь], потому что маленький размер иона Ь] позволяет молекулам воды ближе подойти к центру этого иона это обусловливает очень высокую устойчивость гидратированного иона. [c.433]

Рис. 14-20. В растворе гидратированный ион На окружен октаэдром отрицательных зарядов, но эти отрицательные заряды принадлежат ди- Рис. 14-20. В растворе <a href="/info/428977">гидратированный</a> ион На окружен октаэдром <a href="/info/17611">отрицательных зарядов</a>, но эти <a href="/info/17611">отрицательные заряды</a> принадлежат ди-
Рис. 1-9. Схематическое изображение электролитической ячейки. Для того чтобы в цепи мог проходить ток, жидкость должна содержать подвижные ионы этому условию удовлетворяют расп.-тазлснныс сол и растворы, содержащие гидратированные ионы. Вещество, способное проводить электрический ток в результате миграции ионов внутри него, называется электролитом. Если электролитом является раствор соли СиС12, которая диссо- Рис. 1-9. Схематическое изображение <a href="/info/10519">электролитической ячейки</a>. Для того чтобы в цепи мог проходить ток, жидкость должна содержать <a href="/info/3380">подвижные ионы</a> этому условию удовлетворяют <a href="/info/167809">расп</a>.-тазлснныс сол и растворы, содержащие гидратированные ионы. Вещество, способное <a href="/info/337791">проводить электрический</a> ток в результате <a href="/info/594172">миграции ионов</a> внутри него, называется электролитом. Если электролитом является <a href="/info/3445">раствор соли</a> СиС12, которая диссо-

    Растворение газа в воде в какой-то мере подобно его конденсации в жидкость, если судить по близости контакта соседних молекул. Как и в рассмотренном выше случае, энтропия растворенного ионного соединения определяется путем суммирования энтропии его гидратированных ионов. [c.62]

    Константа образования для комплекса Н1(ЫНз) при 25°С равна 6 10 . Какой будет окончательная концентрация гидратированного иона если 50 мл 2,00 М раствора NH3 смешать с 50 мл 0,200 М раствора [c.598]

    В1СИМ0СТИ от характера соединений Мп . В случае образования гидратированных ионов потенциал высок и достаточен для окис-Л5ния С1". Индуцированная реакция окисления С1 не возникает при введении в раствор так как потенциал системы [c.376]

    При диссоциации любой кислоты образуются ионы водорода. Поэтому все свойства, которые являются общими для водных растворов кислот, мы должны объяснить нрнсутстиием гидратированных ионов водорода. Это они вызывают красный цвет лакмуса, сообщают кислотам кислый вкус и т. д. С устранением ионов водорода, наиример при нейтрализации, исчезают и кислотные свойства. Поэтому теория электролитической диссоциации определяет кислоты как электролиты, диссоциирующие в растворах с образованием ионов водорода. [c.243]

    Сульфат меди( ) USO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам [Си(Н20)4Р+, поэтому такую же окраску имеют все разбавленные растворы солей меди(II), еслн только онн не содержат каюих-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы. В таком виде он называется медным купоросом (см. стр. 390). [c.573]

    Считается, что энергия активации определяется в первую очередь работой создания полости в растгюрнтеле, куда ион переходит из предыдущего положения равиовесня. Энергия активации, подсчитанная из температурной зависимостн скорости движения иопов, оказалась примерно одинаковой для всех нонов, кроме ионов водорода. Ее значение для водных растворов колеблется между 16 и 18 кДж-моль-, что довольно близко к энергии активации вязкого течения воды обычно это связывают с тем, что перескоки совершают гидратированные ионы, хотя возможны и другие объяснения. Энергия активации миграции иоиов водорода составляет всего лишь [c.129]

    Путь I отвечает непосредственному разряду комплексного нона на электроде и может быть разбит на те же основные стадии, что и разряд гидратированных ионов серебра (см. рис. 14.5). Однако в отличие от выделения серебра и простых ионов здесь разряжаются не катионы, а анионы и, следовательно, влияние поте1Шиала электрода и его заряда на акт разряда должно быть иным. Кроме того, в результате разряда появляются избыточные ионы циана и наряду со стадией подвода разряжающихся частиц появляется стадия отвода ионов N от поверхнос ти электрода. [c.294]

    В результате ионизации молекул Н аО возникают гидратированные ионы ОН и ОНз. При столкновении их снова образуются молекулы поды, т. е. процесс ионизации обратим. Процессы ионизации и молизации протекают непрерывно. Вследствие прочности связи О—Н степень ионизации воды в общем незначительна. [c.121]

    Аналогично ведут себя в поле катионов некоторых переходных металлов и другие полярные или легко поляризующиеся молекулы, способные проявлять протондонорные свойства — Н2О, NH20И, органические амины. Выступая в качестве лигандов, они способны к отн еплепию протона в водных растворах и с точки зрения протонной теории кислот и оснований (стр. 245) ведут себя как кислоты. Например, взаимодействие гидратированного иона меди с водой следует записать так  [c.604]

    Число составных частей — это число тех видов части[1, состав-ляюии1х систему, которые могут существовать отдельно и вне системы. Так, в водном растворе поваренной соли можно насчитать много видов частиц (молекулы соли и воды, гидратированные ионы Na С1 , Н , ОН ), В действительности же в системе только две составные части вода и поваренная соль, так как ни один нз перечисленных вьние ионов не может бьггь извлечен из данной системы в отдел ьпострь [c.164]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Ионно-электростатическая компонента расклинивающего давления, согласно [42, 45], зависит, главным образом, от потенциалов поверхностей, ограничивающих пленку. Поскольку изученные нами ПАВ являлись неионогенными и при их добавлении ионная сила дисперсионных сред оставалась постоянной, а концентрации ионов в отсутствие Na l при pH = 6- 7 были достаточно низки, в первом приближении можно полагать равенство электрокинетических и штерновских потенциалов. Следовательно, обнаруживаемое в опыте повышение -потенциала при увеличении содержания ПАВ в интервале от 1-10 до 1-10 —1-10 моль/дм (рис. 12.5) обусловлено вытеснением из слоя Штерна сильно гидратированных ионов водорода. По мере заполнения адсорбционного слоя ПАВ, возможно, происходит уменьшение поверхностной концентрации гидроксил-ионов, что вызывает снижение -потенциала при концентрации ПАВ 10 —10 3 моль/дм  [c.210]

    В сущности железо обладает не большей реакционной способностью, чем другие обсуждавшиеся выше переходные металлы. Однако, к сожалению, оксиды железа непрочно пристают к поверхности металлического железа, Ржавчина (оксид железа) отслаивается по мере образования и предоставляет возможность новой поверхности металла реагировать с окружающей средой. Содержащая хром нержавеющая сталь больше сопротивляется коррозии, но для защиты железа чаще используются покрытия из хрома, олова, никеля или красок. Соединения железа(П) обычно имеют зеленую окраску, а гидратированный ион железа(Ш), Ре(Н20) , окрашен в бледно-фиолетовый цвет. В состояниях окисления - - 2 и -Ь 3 железо образует октаэдрические комплексы с цнанидными ионами, Ре(СК) и Pe( N)g . Традиционные названия этих иоиов - ферроцианид и феррициа- ид. Согласно ссБрсмснной систематической номенклатуре, их называют гексацианоферрат 11) и гексацианоферрат(Ш). Номенклатура комплексных ионов излагается в гл. 20. [c.445]

    В высших состояниях окисления катионы переходных металлов неустойчивы, даже если они координированы молекулами воды. Такие высокие состояния окисления могут стабилизоваться, если они координируются ионами кислорода. Например, 8с сушествует в виде гидратированного иона 8с(Н20)й , Т1(1У) требует стабилизующего влияния таких координирующихся групп, как гидроксид-ион, образуя устойчивый комплекс Т1(0Н)2(Н20)4 , а У(У), Сг(У1) и Мп(УП) координируются ионами кислорода, образуя УО2, СгО и МПО4. Состояния окисления, неустойчивые в растворах, могут стабилизоваться при образовании комплексов типа СиСЬ.  [c.450]

    Точная формула иона, записанного нами как A10(0H)J, неизвестна. Современные исследования показывают, что гидратированный ион алюминия имеет состав AUHjO) . Удаление из него трех протонов может привести к образованию нейтрального нерастворимого соединения А1(0Н)з(Н20)з, которое, теряя еще один протон, должно образовывать А1(0Н)4(Н20)2. По-видимому, последняя формула лучще всего отражает реальную структуру гидроксида алюминия. [c.486]

    Полярность молекул жидкой воды делает ее прекрасным растворителем для ионных кристаллов типа Na l. Вода способна растворять Na l и разъединять его противоположно заряженные ионы Na и С1", потому что необходимая для их разъединения энергия обеспечивается образованием гидратированных ионов (рис. 14-20). Каждый ион Na в растворе тоже окружен октаэдром отрицательных зарядов, но вместо ионов С1 их роль играют отрицательные полюса атомов кислорода в молекулах воды. Ионы С1 в растворе тоже гидратированы, но к ним обращены положительно заряженные концы молекул воды (атомы Н). Неполярный раство- [c.621]

    Энтропия метанола, СН3ОН, при растворении возрастает лишь незначительно, поскольку моль молекул метанола, диспергированных между молекулами воды, оказывается нена шого больше неупорядоченным, чем моль чистого жидкого метанола. Растворение муравьиной кислоты, НСООН, приводит к большему возрастанию энтропии, поскольку ее молекулы частично диссоциируют на протоны и формиат-ионы, НСОО в результате чего из одной частицы образуются две. Кристаллическая решетка хлорида натрия при растворении полностью разрушается, и при этом образуются гидратированные ионы Na и С1 , что обусловливает значительное возрастание неупорядоченности, хотя часть молекул воды оказывается связанной вследствие гидратирования ионов. Заметим, что энтропия раствора Na l получена из данньк приложения 3 путем сум шрования энтропий водных растворов двух ионов  [c.62]

    Все три описанные выше реакции протекают, несмотря на необходимость поглощения при этом теплоты, потому, что их продукты обладают большей внутренней неупорядоченностью, чем исходные реагенты. Пары воды характеризуются большей неупорядоченностью и, следовательно, имеют большую энтропию, чем жидкая вода. Гидратированные ионы NH4 и I имеют большую энтропию, чем кристаллический NH4 I. Газообразные NO2 и О2 обладают большей неупорядоченностью и имеют большую энтропию, чем твердый N2O5. Химическая система стремится не только к состоянию с минимальной энергией или энтальпией, но также к состоянию с максимальной неупорядоченностью (вероятностью, или энтропией). На этом основании следует ввести новую функцию состояния, называемую свободной энерг ией, G. [c.68]

    Консганта равновесия этой реакции при 25°С равна 2,0 10" , а стандартная сьободная энергия недиссоциированного гидразина в водном растворе 127,9 кДж моль Учитывая, что гидратированному иону Н пркписывается (условно) стандартная свободная энергия [c.117]

    После добавления NH3 к раствору Со часть аммиака соединяется с Со , образуя некоторое количество комплексных ионов. Когда после добавления NH3 устанавливается равновесие, концентрации комплексных ионов, неиспользованного NH3, а также свободньгх (точнее гидратированных) ионов Со можно вычислить по уравнению (20-2). [c.242]


Смотреть страницы где упоминается термин Гидратированные ионы: [c.47]    [c.94]    [c.308]    [c.341]    [c.440]    [c.444]    [c.605]    [c.105]    [c.119]    [c.259]    [c.447]    [c.244]   
Химия для поступающих в вузы 1985 (1985) -- [ c.107 ]

Химия для поступающих в вузы 1993 (1993) -- [ c.123 ]

Неорганическая химия (1981) -- [ c.216 ]

Химия (1978) -- [ c.255 , c.257 , c.345 , c.475 , c.560 ]

Учебник общей химии 1963 (0) -- [ c.123 ]

Неорганическая химия (1981) -- [ c.216 ]

Общая химия (1974) -- [ c.387 , c.388 ]

Ионообменная технология (1959) -- [ c.376 ]

Химия Издание 2 (1988) -- [ c.99 ]

Ионообменная технология (1959) -- [ c.376 ]




ПОИСК





Смотрите так же термины и статьи:

Активность гидратированных ионов

Гидратированные ионы, коэффициент активности, выражение

Гидратированные ионы, оксо-соли, химия водных растворов

Гидратированные ионы, структура

Гидратированные катионы, комплексные соединения, ионный обмен

Гидролиз гидратированного иона

Гидролиз гидратированного иона никеля

Гидролиз гидратированных ионов плутония различных степеней окисления

Диффузия гидратированного иона

Ионные соли гидратированный ион

Ионы гидратированные загрязняющие воду

Ионы гидратированные комплексные

Ионы гидратированные радиус

Исследование координационной симметрии ионов меди в некоторых гидратированных щелочных и щелочноземельных формах цеолита типа А методом ЭПР

Кислотные свойства гидратированных ионов металлов, не относящихся к группам щелочных и щелочноземельных

Мольный объем гидратированных ионо

Определение плотности ионитов в гидратированном и негидратированном состоянии

Радиус гидратированных ионо

Радиус гидратированных ионо ионной сферы

Радиус гидратированных ионо ионов

Радиусы гидратированных ионов

Сольватация гидратированного иона

Химия слабокислых растворов гидратированного иона Веа



© 2025 chem21.info Реклама на сайте