Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Проводимость электролитическая

    Жидкие растворы по своей природе, свойствам, характеру взаимодействий между частицами очень разнообразны, в связи с чем трудно создать единую количественную теорию, описывающую поведение различных растворов в широкой области концентраций. Наука о растворах —одна из наиболее старых областей естествознания, в развитие которой сделан вклад многими исследователями. В ходе развития учения о растворах были высказаны две точки зрения на природу растворов —физическая и химическая. Физическая теория растворов, возникшая главным образом на основе трудов Вант-Гоффа, Аррениуса и Оствальда, опиралась на экспериментальное изучение коллигативных свойств разбавленных растворов (осмотическое давление, новышение температуры кипения, понижение температуры замерзания раствора и т. п.), зависящих главным образом от концентрации растворенного вещества, а не от его природы. Количественные законы (законы Вант-Гоффа, Рауля) были открыты в предположении, что в разбавленных растворах молекулы растворенного вещества подобны молекулам идеального газа. Отступления от этих законов, наблюдаемые для растворов электролитов, были объяснены на основе теории электролитической диссоциации Аррениуса. Простота представлений физической теории и успешное применение ее как для объяснения свойств растворов электролитов, так и для количественного изучения электрической проводимости растворов обеспечили быстрый успех этой теории. Химическая теория растворов, созданная преимущественно Менделеевым и его последователями, рассматривала процесс образования раствора как разновидность химического процесса, характеризующегося взаимодействием частиц смешивающихся компонентов. Менделеев рассматривал растворы как системы, образованные частицами растворителя, растворенного вещества и неустойчивых химических соединений, которые образуются между ними и находятся в состоянии частичной диссоциации. В классических трудах Менделеева четко сформулированы основные положения теории растворов. Менделеев указывал на необходимость использования всей суммы химических и физических сведений о свойствах частиц, [c.344]


    Гальваническим элементом, называется устройство, в котором химическая энергия преобразуется в электрическую. Он состоит из двух электродов, погруженных в растворы электролитов. Между этими растворами устанавливают контакт с помощью пористой перегородки (мембраны) или электролитического мостика, т. е. сифона, заполненного насыщенным раствором электролита. Мембрана или электролитический мостик обеспечивают электрическую проводимость между растворами, но препятствуют их взаимной диффузии. [c.130]

    Для более глубокого понимания теории электролитической диссоциации особое внимание необходимо обратить на тот факт, что значение степени электролитической диссоциации сильных электролитов, оцененное на основании результатов физико-химических измерений, является, напротив, заниженным (особенно для растворов средней и высокой концентраций). Так, наиболее распространенным методом измерения степени диссоциации сильных электролитов является метод, основанный на сопоставлении электрической проводимости данного раствора и бесконечно разбавленного раствора того же вещества. Значение этой величины всегда оказывается меньше единицы и носит название кажущейся степени диссоциации — [c.71]

    Электролитическая проводимость жидкостей, вызванная подвижностью ионов. При повышении температуры проводимость электролитических проводников улучшается, поскольку при более высоких температурах ионы могут двигаться свободнее за счет понижения вязкости и уменьшения сольватации ионов. [c.343]

    Рост эквивалентной электрической проводимости с увеличением разведения (см. рис. 166) для слабых электролитов может быть объяснен на основе представлений классической теории электролитической диссоциации, согласно которой с увеличением разведения степень диссоциации элетролита возрастает и в пределе стремится к 1. Для сильных электролитов, диссоциирующих полностью. [c.460]

    Вычислить степень электролитической диссоциации и константу диссоциации раствора уксусной кислоты, концентрация которого 4,33% (масс, доли, %), если при 18°С удельная электрическая проводимость раствора 0,12 См/м, а плотность 1,005 г/см . [c.144]

    Наряду с системами, для которых законы Фарадея оправдываются количественно, существуют и такие, где возможны отклонения от этих законов. Так, например, расчеты по законам Фарадея окажутся ошибочными в случае электролитической ванны, состоящей из двух платиновых электродов, погруженных в растнор металлического калия в жидком аммиаке. Такой раствор, как проводник со смешанной электропроводностью, обладает заметной металлической проводимостью, и значительная доля электронов в процессе электролиза способна непосредственно переходить с электрода в раствор, не вызывая никакого химического превращения. Подобные же явления наблюдаются при прохождении тока через газы. Одиако такие системы уже не будут истинными электрохимическими системами, состоящими только из проводников первого и второго рода. В истинных электрохимических системах переход электронов с электрода в раствор и из раствора на электрод обязательно связан с химическим превращением и, следовательно, полностью подчиняется законам Фарадея. Законы Фарадея, являясь, таким образом, естественным и неизбежным результатом самой природы электрохимического превращения, должны в то же время рассматриваться как наиболее надежный критерий истинности электрохимических систем. [c.282]


    Сопротивление раствора сульфата натрия в электролитическом сосуде 2,86 Ом. Вычислить удельную электрическую проводимость раствора, если площадь электродов 5,38 см , а расстояние между ними 0,82 см. [c.143]

    При 25° С удельная электрическая проводимость раствора этиламина СгНеМНзОН при разведении 16 м /кг-экв равна 0,1312 См/м. Вычислить степень электролитической диссоциации, концентрацию ионов ОН- и константу электролитической диссоциации. Подвижность иона С2Н5ННз равна 5,86 См м кг-экв- , а иона ОН- — 19,83 См м кг-экв .  [c.145]

    Водородный электрод, помещенный в правый стакан, устроен немного сложнее газообразный водород под стандартным давлением подается на пластину из черненой платины, которая обеспечивает проводимость между внешней цепью и раствором, а также катализирует гетерогенные процессы окисления водорода и восстановления водородных ионов. Эта пластина погружена в раствор серной кислоты со стандартной концентрацией водородных ионов 1 моль/л (pH = 0). Между растворами помещена и-образная стеклянная трубка, закрытая с торцов пористыми пластинами и заполненная раствором сильного электролита (скажем, КС1), обеспечивающим проводимость, - электролитический ключ. [c.208]

Таблица 13. Степень электролитической диссоциации по данным измерений электрической проводимости (а() и э. д. с. (аз) Таблица 13. <a href="/info/4962">Степень электролитической диссоциации</a> по данным <a href="/info/69754">измерений электрической</a> проводимости (а() и э. д. с. (аз)
    Следовательно, наличие в масле мыл может служить одной из основных причин диэлектрических потерь в трансформаторных маслах. Диэлектрические потери в нефтяном изоляционном масле, связанные с присутствием в нем мыл, нри температуре от 10 до 150° С при частоте 50 гц обусловливаются только катафоретической проводимостью. Электролитическая диссоциация мыл в раствсре углеводородов на ионы и ионная проводимость практически не наблюдаются. [c.77]

    Пример проявления свойств М-элемента в ФХС представлен на рис. 1.6. Электрохимическая система, изображенная на рис. 1.6, представляет электролитическую ванну с двумя электродами и двумя противоположно заряженными мембранами [17]. При прохождении электрического тока э = / под действием напряжения щ = е мембраны препятствуют движению ионов с зарядом того же знака, поэтому концентрация электролита в межмембранной области возрастает или убывает в зависимости от направления тока. Так как электрическая проводимость падает с уменьшением концентрации ионов, то внутреннее сопротивление зависит от общего количества прошедшего через систему тока. Концентрация (а следовательно, и сопротивление) будет непрерывно изме- [c.34]

    К структурно-чувствительным свойствам можно в определенной степени отнести и электрическую проводимость электролитических металлов. Для очень чистых металлов с кубической решеткой электропроводимость монокристалла не зависит от направления. Электропроводимость поликристалла должна быть ниже лишь за счет влияния границ зерен между отдельными кристаллами. Более сильными должны быть отличия монокристалла от поликристалла для кристаллов некубической системы. Кристаллы с гексагональной, тетрагональной или тригональ-ной структурой (например, Zn, d, Sb, Bi) обладают осевой симметрией, поэтому их сопротивление различно по главной оси и по перпендикулярным к ней направлениям. Для таких, даже самых чистых, металлов наличие текстуры вызывает изменение электропроводимости р 20]. Электропроводимость металлов, полученных электролизом, существенно зависит от природы металла  [c.43]

    Действие прибора основано на том, что концентрация может быть определена измерением проводимости, так как между концентрацией и проводимостью электролитических растворов, как правило, имеется определенная зависимость. [c.264]

    Для измерения электрической проводимости исследуемый раствор помещают в кон-дуктометрическую ячейку, схема которой изображена на рис. 9.1. В корпусе 3 укреплены платиновые электроды /> подключаемые к кондуктометру выводами 4. Для получения точных и воспроизводимых измерений электроды платинируют — электролитически наносят на их поверхность платиновую ч рнь, увеличивающую поверхность. Площадь электродов и расстояние между ними подбирают в зависимости от значения измеряемого сопротивления. Чем больще сопротивление, т. е. меньше удельная электрическая проводимость, тем большую поверхность должны иметь электроды и тем меньше должно быть расстояние между ними. [c.60]

    Известно, что расплавленные шлаки представляют собой микро-неоднородный раствор, состоящий из простых катионов и анионов и комплексных кислородсодержащих анионов, устойчивость которых зависит от многих факторов, в том числе и от природы простых катионов. Ионная структура жидких шлаков предопределяет их преимущественно электролитическую проводимость, т. е. перенос тока в шлаках при наложении электрического поля, и обусловливается в основном упорядоченным движением ионов. [c.83]

    Опыт показывает, что водные растворы определенных веществ, которые были названы электролитами, являются сравнительно хорошими проводниками электрического тока. Речь идет о веществах, которые в химии называются кислотами, солями и основаниями. Электролитическая электропроводность отличается от металлической проводимости следующими характерными свойствами  [c.239]


    Согласно теории Аррениуса степень электролитической диссоциации а, определяющая долю ионизированных молекул в растворе, должна быть при заданных условиях одной и той же (независимо от метода ее измерения). При этом, согласно ее физическому смыслу, она не может быть больше единицы и меньше пуля. Однако многочисленные экспериментальные данные, полученные разными учеными, противоречили этим положениям теории. В качестве примера в табл, 13 приведены величины а для растворов соляной кислоты, вычисленные на основании измерений электрической проводимости ( i) и электродвижущих сил (02). [c.113]

    ИЛИ В аэрированных растворах, содержащих ионы, которые образуют комплексы с медью (например, СЫ , ЫН4), может наблюдаться значительная коррозия. Для меди характерна также коррозия в быстро движущейся воде или водных растворах, которая носит название ударной коррозии (рис. 19.1). Ее скорость возрастает с увеличением концентрации растворенного кислорода. В обескислороженной быстро движущейся воде, по крайней мере вплоть до скорости движения 7,5 м/с, ударная коррозия незначительна. В аэрированной воде коррозия усиливается с ростом концентрации С1 и уменьшением pH [1 ]. Свободная от кислорода медь с высокой электрической проводимостью, а также электролитически рафинированная медь практически стойки к коррозионному растрескиванию под напряжением (КРН). Однако раскисленная фосфором медь, содержащая всего 0,004 % Р, подвержена этому виду разрушений [2]. [c.327]

    Для получения точных и воспроизводимых измерений электроды платинируют (электролитически наносят на их поверхность платину, Приложение Г). Площадь электродов и расстояние между ними подбирают в зависимости от значения измеряемого сопротивления. Чем больше сопротивление (меньше удельная электрическая проводимость), тем большую поверхность должны иметь электроды и тем меньше должно быть расстояние между ними. [c.191]

    Удельная электрическая проводимость с-молярного раствора вещества В равна V- Рассчитайте кажущуюся степень электролитической диссоциации этого вещества в указанных условиях. [c.206]

    Эквивалентная электрическая проводимость у сильных и сла-<бых электролитов возрастает с увеличением разбавления (т. е. с уменьшением концентрации раствора) и достигает некоторого предельного значения, которое называется электрической проводимостью при бесконечном разбавлении и обозначается Хоо или Хо-Это явление объясняется тем, что по мере разбавления растворов слабых электролитов растет степень электролитической диссоциации а, для сильных же электролитов увеличивается расстояние между ионами, в результате чего силы взаимного притяжения ослабевают и скорость движения ионов повышается. [c.126]

    Таким образом, эквивалентная проводимость раствора при данном разбавлении пропорциональна степени электролитической диссоциации раствора электролита и сумме абсолютных скоростей катиона и аниона. Число Фарадея является в данном случае коэффициентом пропорциональности. [c.129]

    Из этого соотношения легко найти сопротивление раствора в электролитической ячейке, так как все три величины правой части уравнения известны. По величине сопротивления рассчитывают электрическую проводимость. [c.220]

    Гальванический элемент -- это устройство, сосгоящее из двух электродов, в которых энергия химической реакции преобразуется в электрическую. Гальванические элементы являются источником постоянного тока. В простейшем случае он состоит из двух металлических электродов (например, цинкового и медног о), погруженных в растворы электролитов (солей этих металлов). Между этими растворами осуществляется контакт с помощью пористой перегородки или электролитического мостика (сифонной трубки с гелем, насыщенными раствором КС1 или NH NOj), которые обеспечивают электрическую проводимость между электродными растворами, но препятствуют их взаим--1 ной диффузии. [c.114]

    Непременным условием возникновения электрического тока является то, что он может протекать только в замкнутой цепи. Поэтому используют так называемый электролитический ключ 5. В один полуэлемент наливается раствор одного из реагентов, в другой - другого . После этого между ними устанавливают трубку с закрытым краником, содержащую раствор инертного по отношению к обоим реагентам электролита, обеспечивающий ионную проводимость (см. рис. 8.1). Иногда трубка с раствором заменяется мембраной. [c.163]

    При 25° С и разведении 64 м кг-экв удельная электрическая проводимость масляной кислоты С3Н7СООН составляет 1,812-10-2 См/м. Вычислить степень электролитической диссоциации, концентрацию ионов водорода в растворе и константу электролитической диссоциации. Подвижность иона С3Н7СОО- равна [c.145]

    Опытные данные указывают на то, что увеличение отклонений от законов разбавленных растворов сопровождается повышением электрической проводимости растворов, а также способности к химическому взаимодействию. Перечисленные особенности растворов электролитов, обнаружение ионов путем спектрального анализа и другие экспериментальные факты привели к появлению во второй половине XIX в. теории электролитической диссоциации Аррениуса, в соответствии с которой при образовании раствора электролита происходит диссоциация растворенного вещества на ионы, тем более полная, чем больше разбавлен раствор электролита. Несмотря на упрощенность этой теории, совершенно не рассматривающей причин диссоциации, не учитывающей сил взаимодействия между частицами, образования сольватов и других явлений, она позволила объяснить целый ряд опытных фактов. [c.202]

    Отсюда следует, что эквивалентная электрическая проводимость растворов солей, кислот и оснований зависит от концентрации раствора, а также от числа проводящих ионов в растворе и их подвижности. Последняя определяется скоростью движения ионов в направлении электрического поля при падении потенциала, равном 1 В на 1 м. С увеличением разведения (уменьшением концентрации раствора электролита) эквивалентная электрическая проводимость возрастает, стремясь при бесконечном разведении к предельному значению Хо. Согласно теории С. Аррениуса степень электролитической диссоциации а связана с электрической проводимостью соотношением [c.80]

    Методы измерения электрической проводимости растворов широко применяют для определения констант электролитической диссоциации слабых электролитов, концентраций растворенных веществ или их растворимости, степени и константы гидролиза солей, содержания растворенной формы методом кондуктометрического титрования и т. д. [c.83]

    Для исследования структуры пленок бромида серебра, полученных термическим путем, авторы воспользовались измерениями проводимости, которые дали следующие результаты сопротивление пленки AgBr толщиной 20. а при Б0° равно 35 ООО пм., откуда /- = 1 10 ом -см . Эта величина на 1,5 порядка ниже проводимости электролитических пленок AgBr и примерно на 1 порядок выше проводимости монокристалла. При 20° проводимость термических пленок А Вг приблизительно равна 1 смг  [c.80]

    Так как проводимость электролитических пленок бромида серебра на 1,5 порядка выше, чем термических, то коэффициент диффузии ионов Ag+ должен составлять около 5- 10 см -секг . [c.84]

    Математическая модель представляет трехмерную краевую задачу, областью расчета которой является электролитическая ячейка с локальным искривлением границы на одной из границ из-за пузырька. Стационарное распределение тока в случае однородной проводимости среды описывается уравнением Лапласа Дф = О, где ф - потенциал. Для корректной постановки задачи в каждой точке границы надо задать либо потенциал, либо гиютность тока, либо условия линейной или нелинейной поляризации. [c.118]

    Пример 1. Удельная электрическая проводимость раствора Li I (0,02 н.) при 25 °С равна 0,209 См-м-. Рассчитайте степень электролитической диссоциации Li l в указанных условиях. [c.199]

    Как известно, величина электрической проводимости сильных электролитов далеко не соответствует полной диссоциации их молекул на ионы. Однако при оптических и спектральных исследованиях растворов сильных электролитов в них ие обнаруживается характерных свойств молекул, что отличает эти растворы от растворов слабых электролитов, в которых можно обнаружить недиссоциированные молекулы. Рентгенографическое исследование кристаллов СИЛЫ1ЫХ электролитов, например КС1 и Na l, показало, что эти электролиты даже в твердом агрегатном состоянии пе содержат молекул и имеют ионные кристаллические решетки. Однако если принять, что диссоциация сильных электролитов осуществляется полностью, и этим ограничиться, то совершенно необъяснимы будут другие явления. Например, экспериментально определяемые величины понижения температуры замерзания и повышения температуры кипения оказываются у сильных электролитов меньше, чем следовало бы ожидать при полной диссоциации молекул на ионы. Таким образом, теория электролитической диссоциации полностью не объяснила все свойства растворов. [c.114]

    Эквивалентная проводимость электролитов находится в прямой зависимости от разбавления раствора. Аррениус объяснил это явление постепенным увеличением числа ионов в растворе по мере уменьшения концентрации все бо/илнее число молекул растворенного вещества диссоциирует на иоиы. Он считал также, что эквивалентная проводимость раствора при данном разбавлении Ху пропорциональна степени электролитической диссоциации а электролита в этом растворе. [c.132]

    Сосуд для измерения электрической проводимости, заполненный 0,02 н. КС1, имеет при 18° С сопротивление 35,16 Ом, а заполненный 0,1 н. СН3СООН— 179 Ом. Вычислить степень электролитической диссоциации и константу диссоциации СН3СООН. [c.144]

    Вычислить степень электролитической диссоциации и константу диссоциации раствора муравьиной кислоты концентрации 4,947о (масс, доли, %), если при 18° С удельная электрическая проводимость раствора 0,55 См/м, а плотность 1,012 г/см . [c.144]

    При растворении вещества, сосюящего из полярных молекул или имеющего ионное строение, в жидкости, также составленной из полярных молекул, между молекулярными диполями растворителя и молекулами или кристаллами растворяемого вещества возникают электростатические силы диполь-дипольного или ион-дипольного взакмоде с твия, способствующие распаду растворяемого вещества на ионы. Поэтому жидкости, состоящие из полярных молекул, проявляют свойства ионизирующих растворителей, т. е. способствуют электролитической диссоциации растворенных в них веществ. Так, хлороводород растворяется и в воде, и в бензоле, но его растворы в воде хорошо проводят электрический ток, что свидетельствует о практически полной диссоциации молекул НС1 на ионы, тогда как растворы НС1 в бензоле не обладают заметной электрической проводимостью. [c.142]

    В зависимости от природы носителей зарядов различают два рода проводимости электронную и ионную (электролитическую). Соответственно различают проводники первого и второго рода. К проводникам первого рода относятся к -таллы, графит, угли, сульфиды и карбиды металлов к проводникам второго рода растворы электролп-тов, чистые вещества — ионные кристаллы в твердом и расплавленном состоянии, вода, плазма и т. п. [c.87]

    Между растворами отдельных электродов устанавливают контакт с помощью электролитического мостика, заполненного насыщенным раствором K I. Электролитическйй мостик обеспечивает электрическую проводимость между растворами, но препятствует их взаимной диффузии. [c.168]


Смотреть страницы где упоминается термин Проводимость электролитическая: [c.291]    [c.23]    [c.291]    [c.730]    [c.465]    [c.124]    [c.465]   
Физическая и коллоидная химия (1988) -- [ c.216 ]

Учебник физической химии (1952) -- [ c.251 ]

Учебник физической химии (0) -- [ c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Детекторы электролитической проводимости

Измерение Электролитической проводимости расплавов стекол

Проводимость

Проводимость ионная электролитическая

Проводимость электролитическая жидкостей

Электролитическая диссоциация проводимость

Электролитическая проводимость и термические эффекты порошков твердого вещества



© 2025 chem21.info Реклама на сайте