Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая и проводимость

    СТИ внутри и вне капли пренебрегаем. В этом случае проводящие капли, взвешенные в диэлектрической жидкости, под действием внешнего электрического поля поляризуются и деформируются, принимая форму эллипсоида с большей осью, направленной по направлению вектора напряженности внешнего электрического поля Ео-Рассмотрим несколько подробнее поведение одиночной проводящей сферической капли радиуса R, свободно взвешенной в неподвижной диэлектрической жидкости постоянной диэлектрической проводимости е в присутствии однородного внешнего электрического поля напряженности Ео (рис. 11.4). [c.272]


    РИС. 45. Зависимость диэлектрической проницаемости (/) и удельной диэлектрической проводимости (2) от частоты (() при различном времени релаксации (т). [c.210]

    В электрическом поле постоянного напряжения все глобулы эмульсии стремятся расположиться вдоль силовых линий поля, так как вода имеет большую диэлектрическую постоянную, чем нефть (для нефти она равна примерно 2, для воды — около 80). Элементарные глобулы образуют между электродами водяные нити-цепочки, что вызывает увеличение проводимости эмульсии и увеличение протекающего через нее тока. Между цепочками глобул возникают свои электрические поля, ведущие к пробою и разрыву оболочек и к слиянию глобул в капли. При увеличении размеров капель согласно закону Стокса они начинают быстрее оседать, и таким путем из эмульсии выделяется чистая вода. При помещении эмульсии в электрическое поле, созданное переменным током, скорость слияния глобул и расслоения эмульсии в 5 с лишним раз больше. Это объясняется большей вероятностью столкновения глобул при наличии переменного тока. Кроме того, при этом разрыв оболочек адсорбированного на глобулах эмульгатора облегчается возникающим в них натяжением и перенапряжением. [c.13]

    Конденсатор, изолированный идеальным диэлектриком, пе показывает никакого рассеивания энергии при применении переменного потенциала. Зарядный ток, называемый в технике циркулирующим, отстает на 90° по фазе от применяемого потенциала, и энергия, накапливаемая в конденсаторе в течение каждой половины цикла, полностью восстанавливается в следующем. Но ни один из существующих диэлектриков не обладает таким идеальным характером, некоторое количество энергии рассеивается под знакопеременным напряжением и выделяется в виде тепла. Такие потери производительности называются диэлектрическими потерями . Обычная проводимость содержит компонент диэлектрических потерь здесь емкостный заряд частично теряется через среду. [c.204]

    Всю совокупность свойств нефтепродуктов, определяющих их качество, К. К. Папок предложил разделить на три группы физико-химические, эксплуатационные и экологические [8, 18]. При этом к экологической группе отнесены стабильность нефтепродуктов при хранении, их пожароопасность и т. д. В работе [19] предложено делить свойства нефтепродуктов на такие три группы физико-химические, эксплуатационные и технические. К физи-ко-хнмическим относят свойства, характеризующие состояние нефтепродуктов и их состав (плотность, вязкость, теплоемкость, теплопроводность, поверхностное натяжение, электрическую проводимость, диэлектрическую проницаемость, элементный, фракционный и групповой углеводородный составы и др.). [c.10]


    Главное различие между свободными ионами и ионными парами состоит в том, что растворы, содержащие только ионные пары, не проводят электрический ток. Таким образом, измерение проводимости позволяет определить содержание свободных ионов. Что касается криоскопии и измерения давления паров,, то в этих случаях ионные пары ведут себя как отдельные частицы. Константы диссоциации ионных пар известны для многих растворителей. Как правило, при низких концентрациях в растворителях с диэлектрической проницаемостью больше 40 находятся главным образом диссоциированные ионы. В растворителях с диэлектрической проницаемостью ниже 10—15 даже при высоком разбавлении свободные ионы почти полностью отсутствуют. [c.17]

    По данным работы [655], диэлектрическая изотерма сорбции воды на торфе также является ломаной линией. На основе калориметрических сорбционных опытов было высказано предположение, что первым двум участкам изотермы отвечает различная энергия связи молекул с центрами сорбции, а третьему, с наибольшей производной е7 а, — образование в процессе сорбции водородных связей между сорбированными молекулами. Существенно, что при критической величине сорбции ао обнаруживается резкое увеличение коэффициента диэлектрических потерь е", обусловленное, по-видимому, значительным возрастанием электропроводности материала вследствие образования цепочек из сорбированных молекул и функциональных групп сорбента — карбоксильных (СООН), гидроксильных (ОН) и других полярных групп. При этом предполагалась возможность эстафетного механизма переноса протона вдоль цепочек, что обусловливает значительное возрастание е и е". Наличие протонной проводимости и протонной поляризации позволяет объяснить не только большие величины с1г /<1а, но и частотную зависимость критической гидратации Со, обнаруженную для ряда сорбентов [646, 648]. Здесь необходимо отметить, что при измерении диэлектрических характеристик применяются слабые электрические поля, которые не могут повлиять на про- [c.245]

    К основным электрическим свойствам топлив, определяющим работоспособность топливоизмерительной аппаратуры и пожаробезопасность заправки летательных аппаратов, относятся диэлектрическая проницаемость, тангенс угла диэлектрических потерь, поляризуемость, электрическая проводимость и электризуемость. [c.75]

    Первое слагаемое в формуле (4.14) описывает потери, обусловленные токами проводимости (тепло Джоуля- Ленца - электрический нагрев), второе-релаксационные потери в диэлектрике (диэлектрический нагрев) и третье-магнитные потери (магнитный нагрев). Лри о=0 в отсутствие магнитных потерь (ц"=0), с учетом формулы (2.51), формула (4.14) переходит в формулу (4.12), использованную при анализе ТВЧ-нагрева. Особенности СВЧ-нагрева заключаются в возможности более гибкого подвода энергии к технологическим объектам, а также в использовании больших удельных мощностей при одинаковых 84 [c.84]

    Диссоциация электролитов в неводных растворителях и электрическая проводимость этих растворов, в первую очередь, согласно правилу Каблукова — Томсона — Нернста определяется диэлектрической проницаемостью растворителя (см. 154). Чем больше диэлектрическая проницаемость растворителя, тем выше степень диссоциации электролита и электрическая проводимость его раствора. Большинство растворителей характеризуется меньшей диэлектрической проницаемостью, чем вода (при 25°С о = 78,25), и только небольшой группе веществ (синильная кислота, формамид и др.) свойственна диэлектрическая проницаемость выше 100. Растворы электролитов в этих растворителях обладают высокой электрической проводимостью. [c.463]

    Диэлектрическая проницаемость растворителя не является единственным фактором, определяющим диссоциацию электролита и электрическую проводимость раствора. Существенную роль при этом играет вязкость растворителя, влияние которой на скорость движения иона в электрическом поле можно оце- [c.463]

    Экспериментально установлено, что в эмульсии, находящейся в электрическом попе, глобулы воды располагаются вдоль его силовых линий (рис. 14), что приводит к резкому увеличению электропроводности эмульсий. Это явление объясняется тем, что глобулы воды имеют в десятки раз большую диэлектрическую проницаемость (—80), чем глобулы нефти ( —2). Если образовавшиеся цепочки глобул воды разрушать, например, размешиванием, то проводимость эмульсии снижается. [c.31]

    Дипольный момент 1,91 В, диэлектрическая проницаемость при 0°С —83,6, удельная электрическая проводимость—2,6 X X10 Ом см . В газообразном НР, согласно данным дифрак ции электронов, обнаружены зигзагообразные цепочки переменной длины. [c.24]

    В соответствии с уравнениями электромагнитного поля электрическая проводимость среды х аналогична ее диэлектрической проницаемости 8 [28]. Поэтому соотношения, полученные для расчета ДП дисперсий, можно применить и для расчета их электропроводности путем соответственной замены Ед, е . и 8 на Хд, и х . Результирующие уравнения можно упростить для случая водонефтяных эмульсий, для которых Хй>Хд. Так, аналогами уравнений (1.9) и (1.11) для ДП эмульсии будут следующие уравнения для ее электропроводности [c.17]


    С увеличением проводимости нефти (или обводненности эмульсии) возрастает и мощность, требуемая на поддержание заданного режима электрообработки. Для количественной оценки связи между напряженностью поля, проводимостью эмульсии и мощностью трансформаторов рассмотрим схему подключения напряжения к электродам, изображенную на рис. 2.19. Сопротивление нагрузки трансформатора представим в виде параллельно соединенной емкости С, образуемой электродами, и сопротивления R, определяемого проводимостью эмульсии в межэлектродном пространстве. Если площадь электродов 5, расстояние между ними /, диэлектрическая проницаемость эмульсии е, а ее проводимость и, то величины С я R можно определить по формулам [c.41]

    Основными требованиями к кабельным маслам являются высокая электрическая прочность, низкие тангенс угла диэлектрических потерь (18 в) и проводимость, малая изменяемость этих показателей в процессе эксплуатации, [c.525]

    К конденсаторным маслам предъявляются следующие требования выс кая диэлектрическая проницаемость, низкие tg 6 и проводимость, газостойкость в электрическом поле и высокая химическая стабильность. [c.529]

    Диэлектрические потери и проводимость [c.531]

    Диэлектрические потери в жидких диэлектриках могут вызываться проводимостью и динольными потерями. Способность диэлектрика проводить электрический ток под действием постоянного напряжения называется проводимостью о. Величина, обратная проводимости, называется удельным объемиы.м сопротивлением она определяется как сопротивление кубика жидкости со стороной 1 см, через противоположные грани которого протекает ток. [c.531]

    Общие диэлектрические потери определяются проводимостью и динольными потерями. [c.532]

    При технической частоте 50 гц (используемой обы чно в трансформаторах) диэлектрические потери в жидких изоляционных маслах определяются практически только проводимостью, потому что дипольные потери в этих жидкостях не наблюдаются, так как время релаксации (порядка 10 —сек) намного меньше частоты. [c.532]

    Тангенс угла диэлектрических потерь (tg6) для трансформаторных и других не очень вязких (при испытуемой температуре) изоляционных масел при 50 гц можно с достаточной для практики точностью рассчитывать по удельной проводимости [5]  [c.532]

    Вода, кислоты и другие кислородсодержащие соединения в растворе углеводородных масел не диссоциированы ыа ионы, и поэтому диэлектрические потери, связанные с ионной проводимостью этих продуктов в жидких диэлектриках, практически не имеют места. [c.542]

    Кайион и Грубер исследовали системы, состоящие из поливинилхлорида, поливинилацетата или полиметакрилата с классическими пластификаторами — трикрезилфосфатом, диоктилфталатом и дибутилфталатом. Авторы пытались установить влияние на эти системы энергии активации, которая связана с явлением диэлектрической проводимости,, поляризации Дебая и поляризации, вызываемой эффектом Максвелла — Вагнера. Установлено явное влияние пластификатора на энергию активации поляризации Дебая и проводимости и во много раз меньшее влияние на энергию активации поляризации, вызываемой эффектом Максвелла — Вагнера. С увеличением концентрации пластификатора проводимость и эффект Максвелла — Вагнера приближаются к предельным значениям. Это дает основание предположить, что оба эти явления имеют ионный характер. [c.366]

    Оказалось, что все жидкости обладают модулем сдвиговой упругости и модуль сдвига таких полярных жидкостей, как вода и спирты, при приближении к поверхности пьезо-кварца на расстояние, меньшее 0,1 мкм, повышается во много раз. По мнению авторов, это также является следствием структурных изменений в пристенных слоях полярных жидкостей. Повышение значения сдвиговой прочности граничных слоев обнаружено также при исследовании электроосмоса в капиллярах при высоких градиентах потенциала [228]. Установлено, что вблизи гидрофильных поверхностей в воде на расстоянии нескольких мономолеку-лярных слоев имеется атюмалия диэлектрических свойств. Например, значительное понижение диэлектрической проницаемости у воды (прн толщине слоя 0,07 мкм — до 4,5), что свидетельствует о снижении свободы вращения молекул воды в тонких прослойках. Теплопроводность жидкости с уменьшением толщины граничной пленки при этом резко возрастает, в то время как ее электрическая проводимость снижается. [c.201]

    Реакция, проводимая при низких температурах (50° С) в различных растворителях (пентан, циклогексан, бензол, диэтиловый или диизопропиловый эфир), протекает очень медленно (в течение нескольких дней) и является гетерогенной, поскольку катализатор нерастворим в средах с низкой диэлектрической проницаемостью. Скорость реакции, молекулярный вес и структура полимера сильно зависят от катализатора и растворителя и от присутствующих иногда в системе неорганических солей (Na l, NaBr). Например, очень эффективный комплекс, известный как алфиновый катализатор [222], получаемый из амилнатрия, пропена и изопропанола в присутствии Na l, можно представить как твердую решетку катионов Na" с анионами [c.107]

    Токи высокой частоты. Воздействие токами высоких частот или сокращенно ТВЧ (0,15-300 МГц) связано с возбуждением внешним электромагнитным полем в веществах в зависимости от их свойств, токов проводимости (вихревые токи Фуко) и токов смещения в диэлектриках. Протекание этих токов вызывает индукционный и соответственно диэлектрический нагрев материалов [14]. Существенный вклад в теорию и практику индукционного и диэлектрического нагрева внесли советские ученые В.П. Вологдин, Г.И. Бабат, A.B. Нету-шил, A.B. Донской и др. [c.82]

    При воздействии электромагнйтного поля на диэлектрики их помещают между пластинами рабочего конденсатора, который является частью высокочастотного контура генератора ТВЧ. Диэлектрические потери, связанные с поляризацией диэлектрика, приводят к появлению тока смещения и поглощению электромагнитной энергии, сопровождающемуся нагревом материала. В некоторых материалах, например содержащих влагу, одновременно происходит их нагрев токами проводимости. [c.83]

    Наряду с диэлектрическими потерями, обусловленными поляризацией, обычно имеют место также потери, вызываемые некоторой небольщой проводимостью материала, от которой реальные материалы полностью не бывают свободны, хотя бы из-за того, что в них всегда содержатся другие вещества в виде примесей. У неполярных полимеров отсутствует ориентационная поляризация и наблюдаются диэлектрические погери, обусловленные только такой проводимостью по абсолютной величине они очень малы. [c.596]

    Рассчитайте эквивалентные электрические проводимости 5 х X 10 и 0,1 Ai растворов Na I по уравнению Кольрауша для 298 К. (Сравните полученные величины с табличными. Данные о подвижностях нонов при бесконечном разбавлении, вязкости и диэлектрической постоянной воды возьмите из справочника [М.]. [c.211]

    Стекло является изолятором электрического тока, хотя некоторая проводимость и возможна благодаря диффузии ионов (например, ионов натрия). Проводимость быстро увеличивается с ростом температуры. Диэлектрическая постоянная стекла зависит от природы модификатора. Например, введение оксида свинца в стекло повышает это значение с 4 до 10. Большое влияние на эксплуатационную долговечность оказывает термостойкость стекол. Термостойкость определяется разностью температур, которую стекло может выдержать без разрушения при его резком охлажцениЕ в воде (0°С). Для большинства видов стекол термостойкость колеблется от 90 до 170 0, а для кварцевого стекла она составляет 800-1000°С. [c.14]

    ПОВЕДЕНИЕ НЕФТЯНЫХ ЭМУЛЬСИЙ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ Коалесценцию капель в электрическом поле выской напряженности используют, как правило, для разрушения эмульсий типа В/Н, полярная жидкость которых, имеющая №льшую диэлектрическую проницаемость и относительно высокую электропроводность (вода), диспергирована в неполярной жидкости с небольшой диэлектрической проницаемостью и сравнительно низкой электропроводностью (нефть, нефтепродукты). Так, диэлектрическая проницаемость воды, молекулы которой характеризуются большим электрическим дипольным моментом, составляет 81, в то вревкш как диэлектрическая проницаемость нефти - около 2. Усредненная диэлектрическая проницаемость водонефтяной эмульсии зависит от содержания воды в ней и с ростом обводненности увеличивается [41, 42]. Электропроводность чистой воды равна 10" - 10" Ом" -см", а соленой - еще больше. Электропроводность безводной нефти составляет всего 10" - 10" Ом" см" . При увеличении содержания воды проводимость эмульсии значительно повышается. [c.47]

    Нефть является диэлектриком, проводимость которого в зависимости от индивидуальных свойств и примесей изменяется в пределах Ю"" —10 (Ом-м) [5]. Диэлектрическая проницаемость (ДП) нефти — более стабильная характеристика. Она изменяется в пределах 1,9—2,8. Электрическая проводимость и ДП эмульсий существенно зависят о концентрации дисперсной фазы и являются функциями частоты и напряженности внешнего электрического поля. Эти две основные электрические характеристики эмульсий довольно подробно изучались теоретически и экспериментально. Обзор общих результатов, полученных при их исследовании, можно найти в работе Ханаи [2], а результатов конкретных исследований водонефтяных эмульсий— в работах [21—26]. [c.15]

    Основными показателямп, характеризующими изоляционное масло как жидкий диэлектрик, принято считать проводимость и тангенс угла диэлектрических потерь (18 б), который нормируется как в отечественных, так и в зарубежных технических условиях на изоляционные масла. [c.523]

    Дрейф электрических зарядов соответственно направлению электрического поля проявляется как проводимость, а локальные смещения зарядов и повороты диполей — как поляризация. Во всех случаях заряды и диполи частично передают накопленную в электрическом поле энергию молекулам жидкосуги, расходуя ее на диэлектрические потери. [c.531]

    Диэлектрические иотери в трансформаторном масле, работаюп ем пр частоте 50 гц, объясняют проводимостью, обусловливаемой наличием, главным образом, примесей [3, 6—14]. [c.533]

    Причиной повышения диэлектрических потерь в масле при 50 гц в процессе эксплуатации является образование коллоидных частиц, вызывающих катафоретическую проводимость. Такими коллоидными веществами могут быть 1) компоненты лака и старого шлама энергетических масел [33, 34] 2) мыла, образующиеся в результате взаимодействия кислых продуктов старепия масел с металлами трансформаторов  [c.545]


Смотреть страницы где упоминается термин Диэлектрическая и проводимость: [c.132]    [c.134]    [c.232]    [c.274]    [c.35]    [c.464]    [c.530]   
Явления переноса в водных растворах (1976) -- [ c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Проводимость



© 2025 chem21.info Реклама на сайте