Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явления диэлектрические

    Максвелл показал, что оба явления — диэлектрический эффект, измеряемый при помощи конденсатора, и отражение света — обусловлены диэлектрической проницаемостью. Если диэлектрическая проницаемость е и показатель преломления п измерены при одинаковой частоте, то, как показал Максвелл, выполняется соотнощение [c.453]

    В экспериментах первого типа скорость вращательного движения обычно определяется невозмущенной внешними силами конформацией цепной молекулы. Это исследование релаксационных процессов в явлениях диэлектрической [49], ядерной [50] и электронной [51] магнитной релаксации, поляризованной люминесценции [52, 53] и релаксации двойного лучепреломления в явлениях Керра [54—56]. В этих экспериментах, используя либо убывание во времени, либо частотную зависимость соответствующей величины, определяют время релаксации т, связанное с коэффициентом вращательной диффузии /)вр [c.52]


    Точно так же и теория Микулина, оперирующая с произвольно выбранными гидратными числами и предполагающая к тому же существование в растворах значительных количеств катионов, и анионов, не взаимодействующих с молекулами воды, не дает какой-либо полезной информации о состоянии веществ, растворенных в воде, и о структуре растворов. Теория Микулина страдает тем же недостатком, что и теория Робинсона ц Стокса, а именно все некулоновские эффекты теория относит только за счет гидратации и изменения гидратации с увеличением т. Однако в литературе хорошо известно, что при уточнении классической модели Дебая-Хюккеля необходимо учитывать следующие эффекты собственный объем ионов изменение диэлектрической проницаемости вблизи иона вследствие явлений диэлектрического насыщения растворителя изменение микроскопической диэлектрической проницаемости в объеме раствора в зависимости от. концентрации изменение количества свободного растворителя изменение энергии сольватации ионов с концентрацией учет кратных и других столкновений изменение структуры растворов с концентрацией учет неполной диссоциации учет специфического взаимодействия ионов. Все эти явления существуют в действительности и без. их учета не может быть построена количественная модель бинарных и тем более многокомпонентных растворов электролитов. Поэтому все попытки отождествить некулоновские эффекты только с-гидратацией, причем с гидратацией в ее классической интерпретации, не могут объяснить (хотя в некоторых случаях и способны описать) те сложные физические и химические явления, которые имеют место в растворах. [c.24]

    В явлениях диэлектрической релаксации возможна ситуация, когда вдоль цепи реализуется случайное (или вообще нерегулярное) чередование продольных составляющих дипольных моментов ГСЦ. Такая система по типу релаксационного поведения близка к одиночному дипольно-му включению (полярной субцепи, с продольным дипольным моментом) в неполярную цепь. [c.59]

    На рис. 3 представлена зависимость логарифма напряженности поля (в дин) от расстояния до центра иона. Из уравнения (III. 10) на основании зависимости F от г можно рассчитать значения ед на различных расстояниях от центра иона. Результаты такого расчета, выполненного Лейдлером [53], приведены на рис. III. 4. Эти данные наглядно свидетельствуют о том, сколь существенна необходимость учета явлений диэлектрического насыщения вблизи иона. Так, даже на расстоянии 10 А от центра трехвалентного иона, т. е. на расстоянии, значительно большем радиуса первой координационной сферы, диэлектрическая проницаемость среды не равна своему значению в чистой воде. [c.101]


    Структура торфа весьма чувствительна к различного рода физическим и физико-химическим воздействиям, что вызывает соответствующее изменение его гидрофильных и водных свойств. Наиболее существенно эти параметры изменяются при обезвоживании, когда в процессе дегидратации торфа усиливаются меж- и внутримолекулярные взаимодействия через поливалентные катионы, содержание которых в торфе достигает 2 мг-экв/г с. в. (грамм сухого вещества), или посредством водородных связей. В определенных условиях ковалентные или ионные взаимодействия переходят в комплексные гетерополярные, вследствие чего при обезвоживании и интенсивной усадке в надмолекулярных образованиях торфа протекают необратимые процессы. Изменение водных свойств торфа при высушивании до низкого влагосодержания наглядно проявляется в явлении гистерезиса на графиках сорбции — десорбции воды, изменяются также его диэлектрические свойства при высушивании — увлажнении [215] и водопоглощение при различной степени осушения пахотного горизонта торфяной почвы [216]. [c.66]

    Понятно, что подвижность влаги в водонасыщенных торфяных системах в первую очередь определяется их структурой, а также электрокинетическими явлениями на границе раздела фаз. Ионогенные функциональные группы торфа, главным образом карбоксильные, диссоциируют в полярной дисперсионной среде (воде) с отщеплением катиона, вследствие чего частицы торфа приобретают отрицательный заряд [221]. Заряд частиц формируется из дискретных элементарных зарядов как вне, так и внутри надмолекулярных ассоциатов торфа [214, 222]. Диффузия полярных молекул внутрь частиц торфа вызывает увеличение диэлектрической проницаемости всего ассоциата, степени диссоциации функциональных групп [223]. В свою очередь, рост плотности заряда структурных единиц торфа интенсифицирует связь воды с торфом по механизму ион-дипольного взаимодействия между ионизованными функциональными группами торфа и молекулами воды. В результате содержание связанной воды в материале увеличивается. Особенно четко это проявляется при повышении pH торфяных систем (см. табл. 4.1) [224]. [c.69]

    Несмотря на широкий круг используемых в различных работах материалов — сорбентов, значительно отличающихся по структуре и физико-химическим свойствам, можно отметить общие, наиболее типичные явления, обнаруживаемые при сорбции воды. Так, диэлектрические изотермы в зависимости от наклона г йа, как правило, можно разделить на несколько участков. Каждому соответствует определенный, характерный для данного интервала влажности материала процесс поляризации. Очевидно, что поляризация и диэлектрическая проницаемость [c.242]

    Духин С. С., Шилов В. Н. Диэлектрические явления и двойной слой в дисперсных системах и полиэлектролитах. Киев Наукова думка, 1972.. 207 с. [c.285]

    Более "быстрыми по сравнению с теплопроводностью являются лучистый и конвективный перенос тепла, последний япя многих высушиваемых тел исключен. Нагреву подвергаются тела, содержащие воду. Вода имеет характерный максимум диэлектрической проницаемости в области СВЧ диапазона электромагнитных волн. Выбор воздействия СВЧ электромагнитного поля является в решении данной задачи физически оптимальным. Дальнейшее ускорение процесса сушки может быть достигнуто при использовании вибраций или акустического поля, ускоряющими перенос влаги к поверхности и ее удаление от поверхности тела [6]. При решении более общей задачи необходимо рассмотреть все возможные физические явления, приводящие к конечной цели. [c.9]

    Релаксационные явления в полимерах. Многие свойства полимеров и, в частности, механические и диэлектрические свойства обнаруживают своеобразные особенности, обусловленные частично замедленной реакцией материала на внешние воздействия. Всякая деформация полимера под действием внешней силы не сопровождается мгновенной перестройкой внутренней структуры до состояния равновесия, отвечающего новым условиям. Для этого требуется некоторый промежуток времени, пока все частицы в соответствии с этими условиями придут в равновесие. Процесс перехода частиц в новое состояние равновесия называется релаксацией. (Релаксацией буквально называется ослабление, в данном случае имеется в виду ослабление напряжения, созданного внешним воздействием). Так, если быстро деформировать полимер и [c.579]

    Очистка масел в электрическом поле является одним из сравнительно новых способов и недостаточно широко применяется на практике. В то же время электрокинетические свойства нефтяных масел, являющихся диэлектриками, определяют возможность и целесообразность их очистки с применением электрического поля. Практический опыт подтверждает, что такая очистка нефтяных масел от твердых загрязнений и воды в некоторых случаях довольно эффективна, однако отсутствие единой теории электрокинетических явлений в жидкой диэлектрической среде тормозит развитие этого перспективного метода очистки. [c.167]


    Экспериментально установлено, что в эмульсии, находящейся в электрическом попе, глобулы воды располагаются вдоль его силовых линий (рис. 14), что приводит к резкому увеличению электропроводности эмульсий. Это явление объясняется тем, что глобулы воды имеют в десятки раз большую диэлектрическую проницаемость (—80), чем глобулы нефти ( —2). Если образовавшиеся цепочки глобул воды разрушать, например, размешиванием, то проводимость эмульсии снижается. [c.31]

    Изучение явлений, связанных с сильной поляризацией обратных и прямых эмульсий (капель касторового масла в среде ПМС-100 и капель ПМС-100 в среде касторового масла), позволило обнаружить различие в их поведении. Скорость капель (д<0,5 10" м) обратных эмульсий значительно возрастает в приэлектродных областях. Контакт их с электродом приводит к возникновению колебания в межэлектродном пространстве. Частота колебания имеет затухающий характер. Это можно объяснить электрохимическим разрядом растворимых в капле (касторового масла) катионов и анионов жирных кислот. Движение капель прямых эмульсий при подходе к электроду, наоборот, замедляется и полностью прекращается на некотором расстоянии от электрода. Зазор между электродом и каплей 5 при ее остановке сокращается с повыще-нием Е. Остановку капли у электрода (эффект расклинивания) можно объяснить диэлектрическим перемещением молекул более полярной среды в неоднородную область поля. Экспериментальная зависимость скорости движения капли прямой эмульсии от напряженности поля показывает, что при низких значениях Е зависимость имеет линейный характер, при Е>2 10 В/м характер зависимости меняется. Аналитическая обработка экспериментальных данных по уравнению Духина для скорости частицы показывает, что зависимость 1 наблюдается только в области значений ">3 10 В/м. [c.23]

    О наличии явлений ассоциации молекул асфальтенов в бензольных растворах и о характере ее зависимости от температуры и концентрации растворов свидетельствует и то обстоятельство, что при достаточно высокой для бензольных растворов температуре (65° С), затрудняющей явления ассоциации, диэлектрическая проницаемость растворов изменяется линейно с концентрацией. В области более низких температур (40° С и ниже) обнаруживается отклонение от линейного характера этого изменения, причем чем ниже температура, тем при более низкой концентрации асфальтенов в растворе проявляется это отклонение от линейного характера изменения. При температуре 40° С отклонение от линейного характера изменения диэлектрической проницаемости бензольных растворов асфальтенов наблюдается при концентрации их, равной 11—12%, при 20°С —8—9%, а при 7° С— уже при концентрации асфальтенов в растворе, равной 4%- [c.80]

    Факт замедленного установления конечных условий свидетельствует, вероятно, п о наличии фазовых переходов в битумах. Исследование дисперсии диэлектрической проницаемости смол [7] показало, что в смолах имеет место аномальная дисперсия. Это явление характерно для высоковязких полярных веществ. Отмечается наличие максимума па кривых е=/(0 уже при частоте 60 гц с ростом частоты максимум сдвигается в область высоких температур. [c.184]

    Определение диэлектрической проницаемости проводилось путем измерения емкости цилиндрического конденсатора, между обкладками (электродами) которого находился исследуемый раствор. В полном согласии с ранними исследованиями было обнаружено явление аномальной дисперсии диэлектрической проницаемости растворов смол в и-гентане (при концентрации 25—40%), которое выражается в уменьшении значения е растворов с ростом частоты [c.184]

    Ввиду того что все процессы, связанные с нагреванием диэлектрика, идут одновременно, при рассмотрении кривых следует говорить лишь о преобладающем влиянии в разных интервалах температур тех или иных факторов. Так, например, о преобладающем влиянии на диэлектрическую проницаемость раствора явлений диссоциации молекулярных ассоциатов и происходящего вследствие этого освобождения полярных групп можно сделать заключение по восходящей ветви кривой г=f t), где Ae/Ai>0. Наоборот, на нисходящей ветви кривой, когда Ae/Ai<0, определяющее влия- [c.186]

    Изучение зависимости диэлектрической проницаемости бензольных растворов асфальтенов от температуры и концентрацин асфальтенов в растворе также подтвердило наличие явлений ассоциации. [c.504]

    О наличии ассоциации молекул асфальтенов в бензольном растворе свидетельствует и тот факт, что при высокой температуре (65° С), затрудняющей явления ассоциации, диэлектрическая проницаемость растворов линейно изменяется с концентрацией, тогда как прп более низких температурах (40° С и ниже) обнаруживается отклонение ее от линейного характера изменений. При этом чем ниже температура, тем при более низкой концентрации асфальтенов в растворе проявляется такое отклонение от линейности. Так, прп температуре 40° С отклонение от линейного изменения проявляется при концентрации асфальтенов в бензольном растворе 11 — 12%, ири 20° С — 8—9%, а ири 7° С — уже при концентрации 4%. [c.505]

    Светорассеяние, или опалесценция, принадлежит к дифракционным явлениям, обусловленным неоднородностями, размеры которых меньше длины волны падающего света. Такие неоднородности рассеивают свет во всех направлениях. Теория светорассеяния (опалесценции) впервые была развита Рэлеем. В ее основе лежит уравнение для интенсивности света /р, рассеянного единицей объема дисперсной системы со сферическими диэлектрическими частицами, значительно меньшими длины [c.111]

    С другой стороны, за последние годы стало известно много диэлектрических явлений, характерных для коллоидных дисперсий, которые не могут быть объяснены с помощью теории полярных молекул. Поэтому нужно искать какой-либо аналитический метод для их толкования. Несмотря на значительный интерес к этой области найдено небольшое число публикаций по диэлектрическим свойствам коллоидных дисперсий, которые изложены в форме, доступной для химика-коллоид-ника. [c.313]

    Если для измерения диэлектрической проницаемости жидкости используется переменный ток достаточно высокой частоты, то молекулы, находящиеся под действием поля, уже не успевают переориентироваться в течение периода колебания переменного тока. При этих условиях имеет место поглощение энергии и начинает играть роль явление диэлектрической релаксации. По значениям времени релаксации могут быть определены внутренние вязкости. Во многих случаях эти величины оказываются ничтожно малыми по сравнению с измеренными микроскопическими вязкостями жидкостей. Так, например, исследования твердого т/ ет-бутилхлорида показали, что выше точки вращательного перехода его внутренняя вязкость много меньше, чем в жидкости. Значения диэлектрической проницаемости, измеренные при высоких частотах, неотличимы от значений, полученных при низких частотах. Непосредственно ниже точки плавления аналогично трет-бутнл-хлориду ведут себя тре/ге-бутилбромид, 2,2-дихлорпропан и метилхлороформ, но при понижении температуры на 20—25° их внутренняя вязкость становится примерно равной вязкости жидкости. [c.485]

    Кроме того, с учетом ВП, согласно [7], определяют так называемую истинную электропроводность у нет- Перенос электрических зарядов характеризуется значениями y ост hYu ti значение Yx определяется поляризационными процессами и связано с явлениями диэлектрических потерь (гл. 1П). [c.23]

    Кроме того, с учетом высоковольтной поляризации, согласно (16), определяют так называемую истинную электрическую проводимость 7ист- Перенос электрических зарядов характеризуется значениями уост и уист, значение уэФФ определяется поляризационными процессами и связано с явлениями диэлектрических потерь (см.гл. 3). [c.50]

    Кайион и Грубер исследовали системы, состоящие из поливинилхлорида, поливинилацетата или полиметакрилата с классическими пластификаторами — трикрезилфосфатом, диоктилфталатом и дибутилфталатом. Авторы пытались установить влияние на эти системы энергии активации, которая связана с явлением диэлектрической проводимости,, поляризации Дебая и поляризации, вызываемой эффектом Максвелла — Вагнера. Установлено явное влияние пластификатора на энергию активации поляризации Дебая и проводимости и во много раз меньшее влияние на энергию активации поляризации, вызываемой эффектом Максвелла — Вагнера. С увеличением концентрации пластификатора проводимость и эффект Максвелла — Вагнера приближаются к предельным значениям. Это дает основание предположить, что оба эти явления имеют ионный характер. [c.366]

    Таким образом, высокое. зиаченме ДП в системах с водородными связями может быть объяснено поляризацией водородных связей. Выясняется также, что с этим процессом связано еще одно явление — диэлектрической релаксации. Это явление подробно описано Фрелихом [10] в рамках теории абсолютных скоростей реакций. Им получено следующее выражение для времени диэлектрической релаксации то  [c.69]

    Содержание гетероатомов (кислорода, серы и азота) во фракциях смол увеличивается в соответствии с увеличением полярности растворителей, применяемых для хроматографического выделения и разделения смол, причем это явление характерно для всех нефтей. С увеличением полярности растворитолей возрастают полярность и диэлектрическая проницаемость смолистых веществ, извлекаемых этими растворителями из силикагеля (табл. 34). [c.59]

    Это явление приписывалось уменьшению активности нитроний-иона [142], уменьшению диэлектрической постоянной за счет добавленных ионов [131] или изметгеиню сольватирующей способности среды [131]. [c.449]

    Аналогичное явление наблюдается и в сильных электролитах, так как при нагревании не только увеличивается подвижность ионов вследствие уменьшения вязкости, но и уменьшается диэлектрическая проницаемость, что приводит к увеличению плотности иЬнной атмосферы, а следовательио, к увеличению электрофоретического и релаксационного торможений. [c.438]

    Диэлектрическая постоянная е (рис. 3) спекающихся, хорошо высушенных углей составляет менее 5 для обычных частот. Она немного больше в углях малометаморфизованных, вероятно, из-за содержания в них сравнительно большого числа функциональных полярных групп, таких как —ОН, и особенно в антрацитах из-за явления заметной полу-проводимости. Однако величины диэлектрической постоянной для углей остаются все же ниже, чем для воды (евад = 80), что позволяет использовать диэлектрическую постоянную для определения содержания влаги в угольной мелочи в непрерывном ее потоке при транспортировке последней [8]. Отметим, что влага, называемая конституционной , остающаяся после высушивания угля до воздушносухого состояния при обычной температуре, отличается по электрическим свойствам от свободной (удаляющейся) влаги, так как она находится в адсорбированном состоянии. [c.21]

    Электрические методы довольно широко применяют для получения данных о строении двойного электрического слоя и о наличии граничной фазы на основе исследования электроповерх-ностных аномальных свойств жидкостей (электропроводность, диэлектрические потери и проницаемость, электрокинетические явления и т. п.). [c.75]

    В теории поляризации специфические свойства поверхности не рассматриваются, в то время как в большинстве случаев на границе раздела фаз образуется поверхностный слой со свойствами, отличающимися от объемных. Например, диспергированные в неполярной среде капельки или частицы обладают электрическим зарядом, который возникает благодаря различным физико-химическим процессам. Анализ явлений в области сильной поляризации затруднен тем, что в диэлектрических системах одновременно может происходить несколько процессов, имеющих различную природу (электрофорез, дизлектрофорез и др.). В связи с этим оценку роли каждого фактора проводят, как правило, на модельных системах. [c.21]

    А содержат димерные углеводородные автоассоциаты, стойкость, которых повышается с повышением сродства к электрону акцептора (ангидрида), в поле влияния которого они находятся. Стойкость этих димеров коррелирует как со строением углеводородной молекулы, так и со свойствами растворителя. Для молекул-до-норов, где второй заместитель отсутствует или максимально удален от первого, стойкость коррелирует с такой характеристикой среды, как диэлектрическая постоянная, а у неплоских молекул — с вязкостью, температурой плавления и показателем преломления. Чувствительность димеров к влиянию среды зависит от типа симметрии молекулы исходного углеводорода. Ранее было сделано предположение о параллельном расположении углеводородных молекул, образуюш,их димер [2]. Есть основания предполагать, что в среде УА взаимное расположение нафталиновых молекул соответствует таковому в кристаллах исходных соединений. На примере систем, исследованных в Д, показано различие активности мономерных молекул нафталиновых углеводородов и соответствующих димеров, существующих в поле влияния ПДА [2]. 05 этом же говорит и различие способности их КПЗ к взаимному наложению синглет-триплетной полосы компонентов на синглет-синглетную полосу КПЗ. Большая стойкость КПЗ с димерами, чен с мономерными молекулами, соответствует известному эмпирическому правилу о повышении прочности при увеличении молекулярного веса одного из компонентов. Механизм взаимодействия между углеводородными молекулами в димере не ясен. Известно мнение, что ароматические углеводороды способны выступать как в роли доноров, так и в роли акцепторов л-электронов [22], Явление образования ароматическими л-донорами димеров вереде органических растворителей в поле влияния ПДА было обнаружено [c.136]

    Изучение закономерностей изменения диэлектрической проницаемости бензольных растворов смол и асфальтенов в зависимости от температуры и концентрации растворов позволило использовать этот метод для обнаружения явлений ассоциации. Известно, что диэлектрическая проницаемость растворов неассо-циированпых полярных соединений снижается с повышением температуры, между тем как в концентрированных растворах смол и асфальтенов в бензоле в области температур от 10 до 25—30° С, наоборот, наблюдается повышение значений диэлектрической проницаемости с ростом температуры. Такой характер температурной зависимости диэлектрической проницаемости в концентрированных бензольных растворах смол и асфальтенов можно объяснить лишь явлениями ассоциации молекул смол и асфальтенов. [c.80]

    Это явление авторы (см. [1]) объясняют наличием диполей и заряженных гетерогенных частиц, свободной ориентации которых в электрическом поле препятствует большая вязкость битума. Нагревание битума сопровождается ухменьшением вязкости, что облегчает ориентацию диполей в электрическом поле и ведет к увеличению диэлектрической проницаемости. Вместе с тем при повышении температуры понижается удельный вес вещества и возрастает скорость движения молекул, что препятствует ориентации диполей в электрическом поле. Оба последних фактора вызывают снижение диэлектрической проницаемости. Таким образом, диэлектрическая проницаемость битумов и смол при нагревании возрастает, если преобладает влияние на ориентацию понижения вязкости (восходящий участок кривой), и уменьшается, если преобладает влияние увеличения скорости движения молекул, препятствующее ориентации и снижению удельного веса. [c.184]

    На рис. 30 приведены данные, отражающие эту зависимость для растворов неразделенной смолы гюргянской нефти в к-гептане. Аналогичные данные были получены для всех фракций смол гюргянской и ромашкинской нефтей. Как было показано выше, ири нагревании уменьшается диэлектрическая проницаемость растворов неассоциированных полярных веществ. Характер завп-спмости e=/(i) для разбавленных растворов смол полностью соответствует этому. Наличие же восходящих участков на кривых, соответствующих высоким концентрациям смолы в растворе, свидетельствует о явлениях ассоциации в концентрированных растворах смолистых веществ. Диэлектрическая проницаемость увеличивается при нагревании вследствие освобождения полярных групп, участвующих в образовании молекулярных ассоциатов, в связи с диссоциацией последних при повышении температуры. [c.186]

    Формирование ССЕ и изменение ее размеров вызывает не только изменение электрокинетического потенциала в НДС, но и ее электрофизических характеристик. Наряду с электрокине-тическими явлениями важную роль играют процессы диэлектрической поляризации, т. е. формирование индуцированных диполей у дисперсных частиц. С поляризацией НДС связаны ориентация и структурообразование, са.мопроизвольное вращение частиц дпсиерсной фазы, в основе которого лежит наведение прн [c.159]

    Битумы обнаруживают тенденцию к образованию максимума диэлектрических потерь при более высоких температурах. На основании своих более поздних исследований, проведенных на битуме, в котором он увеличивал содержание асфальтенов, Сааль [44] объяснил это явление эффектом Максвелла — Вагнера. В этом случае диэлектрик состоит из двух или более компонентов с различными диэлектрическими постоянными и проводимостями. В подобных системах обычно имеются такие носители зарядов, которые могут перемещаться в теле диэлектрика на определенное расстояние. Когда движение носителей зарядов задерживается (в результате их захвата в самом теле диэлектрика или на поверхности раздела либо в результате невозможности их разряда и отложения на электродах), наблюдается появление пространственных зар>дов [451, вызывающих искажение макроскопического поля. Это явление возникает также в результате поверхностной поляризации. [c.42]

    Описанные методы измерения электрофоретической скорости пригодны для эмульсий М/В, диэлектрическая постоянная водной фазы которых велика. Для большинства эмульсий В/М величина е не превышает 5, и испытания в таких ячейках приводят к беспорядочному движению шариков, которые могут притягиваться к электродам, а затем отталкиваться (ван дер Минне и Гермапи, 1952). Это явление называется диэлектрической поляризацией и наблюдается в сильных полях. [c.164]

    Как показано ниже (стр. 334), электропроводность является неотъемлемой частью диэлектрических свойств дисперсных систем и должна рассматриваться как теоретически, так и экспериментально вместе с диэлектрической проницаемостью. Термин электрические сво11ства эмульсий включает вопросы возникновения заряда, поляризации п двойного слоя на поверхности раздела и т. д. Эти явления выходят за пределы данной главы. [c.314]


Смотреть страницы где упоминается термин Явления диэлектрические: [c.50]    [c.111]    [c.153]    [c.396]    [c.100]    [c.55]    [c.132]    [c.464]    [c.189]    [c.267]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.621 , c.656 ]




ПОИСК







© 2024 chem21.info Реклама на сайте