Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Легирование рения

    РЕНИЯ ГЕКСАФТОРИД Rep , желтые крист. t 18,5 °С, 1кт 33,7 °С гидролизуется водой и влажным воздухом. Получ. из элементов при 300—400 °С. Примен. для легирования рением W н Мо, получаемых восст. гексафторидов водородом. ПДК 1 мг/м . [c.505]

    Возрастание требований к октановому числу Двигатель Рено, 1.7 л, 22700/710 и эксплуатационные испытания Отсутствие существенной разницы Отсутствие существенной разницы между легированным и базовым между легированным и базовым топливом топливом  [c.100]


    Таким образом, наличие в стали карбидов различных составов может существенно влиять на ее коррозионную стойкость. Если элемент образует карбиды менее стойкие, чем цементит, то стойкость цементита, легированного этим элементом, уменьшается из-за ослабления прочности связи между металлом и углеродом. Та же зависимость наблюдается и для карбидов других типов. Это объясняется тем, что перенос электрона с атома углерода на атом металла приводит к увеличению числа неспа— ренных электронов в d-оболочке атома металла и, следовательно, к усилению взаимодействия ионов в том случае, если число электронов в -оболочке атома данного металла меньше пяти, и к обратному результату, если число атомов в d-оболочке больше пяти. Поэтому легирование цементита хромом повышает его устойчивость, так как хром имеет менее заполненную d -оболочку [ 77]. [c.154]

    Наиболее эффективной добавкой является рений. Изучение характера влияния легирующих добавок на скорость анодного и катодного процессов позволило сделать заключение о том, что повышение коррозионной стойкости хромистых сталей, легированных N1 или Мо, обусловлено снижением скорости анодного растворения. [c.158]

    При легировании стали рением сильно снижается перенапряжение выделения водорода и коррозионная стойкость возрастает вследствие смещения потенциала стали в положительную сторону, в область пассивных значений. Рений является эффективной катодной добавкой, аналогичной палладию и платине. [c.159]

    Некоторые металлы, в частности железо, кобальт, никель, практически не поддаются амальгамации. Это позволяет транспортировать жидкий металл в емкостях из простой стали. (Особо чистую ртуть перевозят в таре из стекла, керамики или пластмассы). Кроме железа и его аналогов, не амальгамируются тантал, кремний, рений, вольфрам, ванадий, бериллий, титан, марганец и молибден, то есть почти все металлы, применяемые для легирования стали. Это значит, что и легированной стали ртуть нестрашна. [c.205]

    При легировании молибденовых и вольфрамовых сплавов добавка рения снижает температуру перехода вольфрама и молибдена в хрупкое состояние, замедляет рекристаллизацию и улучшает технологические свойства. [c.115]

    Вольфрам представляет большой интерес для техники, как основа конструкционных материалов, работающих при температурах выше 2273К, Дисперсное упрочнение южет быть осуществлено карбидами, нитридами и оксидами. Присутствие дисперсных частиц стабилизирует структуру, повышает температуру начала рекристаллизации вольфрама и обеспечивает высокие механические свойства. Наиболее эффективно повьппают прочностные свойства вольфрама дисперсные карбидьг Упрочнение карбидами применяют в сочетании с твердорастворным упрочнением за счет легирования рением, ниобием, танталом, молибденом. [c.122]


    ВОЛЬФРАМА СПЛАВЫ — сплавы на основе вольфрама. В пром. масштабах применяются с 50-х гг. 20 в. Относятся к жаропрочным сплавам. В. с. легируют рением, молибденом, никелем, танталом, железом, окислами, карбидами и др. соединениями (табл.), способствуюш,ими повышению жаропрочности, пластичности, улучшающими обрабатываемость и др. св-ва. Из всех легирующих элементов самое значительное влияние на св-ва B. . оказывает рений наряду с повышением жаропрочности он улучшает свариваемость и технологическую пластичность — резко снижая т-ру перехода сплава из хрупкого в пластичное состояние до т-ры —100° С. Особо ценным свойством сплавов, легированных рением, является пласт1шность в полностью рекристаллизованном состоянии. Вследствие этого в пром-сти наибольшее применение получил сплав, содержащий 27% Не. Кроме легирования, большое влияние на мех. и некоторые фи.э. св-ва сплавов оказывает степень деформирования, которому их подвергают при обработке давлением. Деформационное [c.208]

    Применение присадочной проволоки, легированной рением (до 0,17оК позволяет повысить пластичность сварных соединений некоторых титановых сплавов [12, 14]. [c.283]

    В точке в поверхность образца полностью активирована. Дополнительное легирование V, 81 или Мо мало изменяет положение точки в, в то время как легирование рением снижает ее к более положительным потенциалам. Это указывает на то, что полное активирование стали анодным током в соляной кислоте при наличии в стали рения затрудняется. По достижении точки в на участке в—с наблюдается линейная зависимость логарифма плотности тока от потенциала для всех исследуемых сталей с наклоном, равным 750 мв. Торможение на этом участке мы связываем, как указывалось выше, с перенапряжением анодного процесса образования окисной пленки. Скорость анодного растворения дополнительно легированных сталей на этом участке в—с) значительно меньше, чем у стали дополнительно нелегированной. Эффективность торможения анодного процесса дополнительными легирующими элементами увеличивается в порядке V, 81, Мо, Ве. Таким образом, введение этих элементов в сталь заметно повышает перенапряжение анодного образования окисной пленки. Повышенное торможение скорости анодного процесса растворения дополнительно легированных сталей, возможно, определяется такн е образованием труднорастворимых солей дополнительных компонентов. В частности, в процессе анодного растворения стали, легированной молибденом, на ее поверхности может накапливаться МоС1з, [c.14]

    Анодное поведение исследуемых сталей изучалось также в подкисленном и нейтральных растворах хлористого натрия, в которых концентрация по хлор-иону оставалась постоянной, равной 1,5 iV (см. табл. 2). Анодные поляризационные кривые, снятые в растворе 1,4 N Na l+0,1 N H l, представлены на рис. 6. Как видно при сравнении кривых этого рисунка с кривыми рис. 5, при уменьшении кислотности раствора до 0,1 N существуют, хотя и значительно сокращаются, участки активного анодного растворения при отрицательных потенциалах. Для всех исследуемых сталей (за исключением дополнительно легированной рением) по-преж-нему сохраняется постоянство наклона кривых, обусловленное растворением металла в виде ионов низшей валентности. В области отрицательных потенциалов для стали 18 Сг—14 Ni и сталей, легированных V и Si, в этом случае практически нет различий в скоростях анодного растворения. Дополнительное легирование нержавеющей стали Мо и Re значительно снижает скорость растворения в данной области потенциалов. [c.16]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сплавам железа коррозионную стойкость, вязкость и твердость. Технеций коррозионностоек и устойчив против действия нейтронов, поэтому может применяться как конструкционный материал для атомных реакторов. Рений в основном используется в электротехнической промьшленности и как катализатор. [c.571]

    Основную массу марганца выплавляют в виде ферромарганца (сплав 60—90% Мп и 40—10% Fe) при восстановлении смеси железных и марганцевых руд углем в электрической печи. Около 90% марганца применяется в металлургии для раскисления и легирования сталей. Он придает сдлавам железа коррозионную стойкость, вязкость и твердость. Рений в основном используется в электротехнической промышленности и как катализатор. [c.621]

    Надо полагать, что влияние всех примесей (О, N. С) аддитивно, а поэтому для получения вязкого при комнатной температуре молибдена содержание О + N + С в нем должно быть не более 0,001 мас.%, т. е. он должен содержать не более 0,0002-0,0003 мас.% каждого из этих элементов, что при существующей технологии изготовления Мо и производстве из него полуфабрикатов пока еще практически невозможно. Отсюда следует, что обычный технический Мо, а тем более его сплавы при нормальной температуре хрупки из-за высокого положения (выше комнатной температуры) порога хрупкости. Легирование Мо элементами замещения приводит к повышению порога хрупкости исключение составляет повджающий порог хладноломкости (так называемый рениевый эффект). Однако согласно данным, приведенным на рис. 34, для понижения порога хладноломкости молибден обычной технической чистоты содержание рения должно быть не менее 20 мас.%. Из-за высокой стоимости рения такой сплав может применяться лиип> для узких целей, например для весьма неметаллоемких конструкций. Другими словами, сплавы Мо + 20 мас.% Ке пока не имеют перспекчивы широкого применения в химическом машиностроении. [c.42]


    Элемент № 75 стал важен для приборостроения ш ренийсодержащих сплавов делают, в частности, кернь измерительных приборов высших классов точности. Керн — это опора, на которой вращается рамка прибора Материалы для кернов должны быть немагнитны, коррозионностойки, тверды. И еще они должны как можнс медленнее изнашиваться в процессе эксплуатации. Таки условиям отвечает многокомпонентный сплав на кобальтовой основе К-40НХМР, легированный 7% рения. Этот же сплав используют для производства упругих элементов крутильных весов и гироскопических приборов. [c.198]

    Легирование коррозионностойкнх сталей палладием, платиной, рутением, рением. [c.123]

    Изучение электрических свойств гомогенных образцов MoSo, легированных танталом [до 3,16% (по массе) Та] и рением [до 10,6% (по массе) Re], показало, что тантал, замещающий молибден в M0S2, является электроактивной примесью, а рений ведет себя электронейтрально [249, с. 433]. [c.152]

    KOMflaKfHOfo KaK tio значению Потенциала айодного растворений, так и по способности адсорбировать водород. Это, по-видимому, связано с особенностями структуры и более развитой поверхностью электролитического рения. Появление площадок, аналогичных площадкам для стали с гальваническим осадком рения, было отмечено при снятии анодных осциллограмм для стали Х25, легированной [c.58]

    Как показали последние исследования [1, 2], легирование некоторых легко пассивирующихся металлов и сплавов, например титана, хрома, нержавеющих сталей небольшими количествами рения способствует их переходу в пассивное состояние и тем самым значительно повышает их коррозионную устойчивость. В связи с этим исследование электрохимических и коррозионных свойств металлического рения представляет значительный интерес. Б литературе этому вопросу до настоящего времени уделено мало внимания. [c.166]

    В компактном состоянии нри обычной температуре металлический рений не взаимодействует с кислородом воздуха. Тонко измельченный металлический рений окисляется при обычной температуре во влажном кислороде с образованием рениевой кислоты. При нагревании порошка металлического рения выше 150° (или компактного металла до 350°) на воздухе или в токе кислорода образуется летучая окись ВваОт. При неполном окислении рения на воздухе или в кислороде образуется ВеОа- Металлический рений значительно более устойчив по отношению к кислороду, чем вольфрам или молибден. Рениевая проволока подвергается действию смеси воздух + азот, содержащей 10% кислорода, только при температурах выше 1600°. При легировании устойчивость рения но отношению к кислороду значительно понижается. [c.445]

    Почти все низколегированные стали (МезС) склонны к ВК- Уточнение требуется для сталей с малой величиной а высоким значением 00,2 (условие -Рен, Рразр)- Данные о поведении сталей в атмосфере водорода подтверждают этот вы-водз, 8, 12 Длительность инкубационного периода для низколегированных сталей составляет для стали 20 менее 1 ч для ЗОХМА — 60 ч 2, для более легированных сталей это время будет еще больше 166 [c.166]

    Многие /-элементы ГУ-УП групп используются как легирующие добавки для улучшения качества сталей. В состав сталей их обычно вводят в виде ферросплавов (сплавов с железом), например, феррохрома, ферромарганца, ферротитана, феррованадия и др. Легирование ими придает сталям ценные качества, например коррозионную стойкость (хром, марганец, титан), твердость и ударная вязкость (цирконий), твердость и пластичность (титан), прочность, ударная вязкость и износостойкость (ванадий), твердость и износостойкость (вольфрам), твердость и ударная вязкость (марганец), жаропрочность и коррозионную стойкость (молибден, ниобий). Марганец используется как раскислитель стали. Все более широкое применение получают эти металлы и их сплавы, как конструкционные, инструментальные и другие материалы. Так, титан и его сплавы, характеризуемые легкостью, коррозионной устойчивостью и жаропрочностью, применяются в авиастроении, космической технике, судостроении, химической промышленности и медицине. В атомных реакторах используются цирконий (конструкционный материал, отражающий нейтроны), гафний (поглотитель нейтронов), ванадий, ниобий и тантал. Вследствие высокой химической стойкости тантал, ниобий, вольфрам и молибден служат конструкционными материалами аппаратов химической промышленности. Вольфрам, молибден и рений, как тугоплавкие металлы, используются для изготовления катодов электровакуумных приборов и нитей накаливания термопар и в плазмотронах. Вместе с тем при высоких температурах вольфрам и молибден окисляются кислородом, причем образующиеся при высокой температуре оксиды не защищают эти металлы от коррозии, поэтому на воздухе они не жаростойки. Вольфрам служит основой сверхтвердых сплавов. Хромовое покрьггие придает изделиям декоративный вид, повышает твердость и износостойкость. [c.373]

    При закалке и отпуске закаленных сплавов циркония, легированных такими элементами, как ниобий, хром, молибден, рений, ванадий и другие, возникает метастабильная ш-фаза. Образование ш-фазы оказывает большое влияние на свойства сплавов, которое выражается в повышении твердости и снижении пластичности. Л. А. Петровой [1] исследована стабилизация -твердого раствора в сплавах циркония с 9 и 10 вес.% ванадия после закалок с 900—1150° методами рентгеновского и металлографического анализов. Исследования показали, что в сплавах наряду с линиями -фазы присутствуют еще линии со-фазы, следовательно, в сплавах циркония с ванадием невозможно получить метастабильную -фазу закалкой. Относительно тантала в литературе имеются разноречивые данные. В. Е. Емельянов и др. [2] сообщают, что рентгеновский фазовый анализ показал в системе цирконий — тантал наличие только двух фаз а-циркония и твердого раствора на основе тантала, стабилизировать -фазу циркония при комнатной температуре не удается >. Однако Д. Е. Вильямс и др. [3] при обсуждении результатов исследования диаграммы состояния цирконий — тантал приводят значения параметров решетки для твердых растворов на основе -цирконня и тантала в сплавах, закаленных с температур 1300 и 1500°. Ни в одной из описанных работ нет указаний на наличие метастабильной -фазы в сплавах циркония с танталом. Вследствие того, что малолегированные сплавы циркония с танталом и ванадием могут быть использованы в качестве конструкционных материалов, а о-фаза оказывает резко неблагоприятное влияние на пластические свойства сплавов, нам представилось интересным изучить появление ю-фазы как в двойных, так и в тройных сплавах циркония с танталом и ванадием, а также выяснить возможность сохранения закалкой в этих сплавах -твердых растворов. [c.98]


Смотреть страницы где упоминается термин Легирование рения: [c.69]    [c.266]    [c.307]    [c.58]    [c.16]    [c.587]    [c.9]    [c.128]    [c.178]    [c.415]    [c.582]    [c.626]    [c.308]    [c.308]    [c.768]    [c.177]    [c.317]    [c.43]    [c.165]    [c.57]    [c.204]   
Тугоплавкие материалы в машиностроении Справочник (1967) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Легирование

Реней

Рений

Рениты

Ренне

Реньо



© 2025 chem21.info Реклама на сайте