Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерная энергетика

    Широкое развитие ядерной энергетики — основной путь преодоления энергетического кризиса. Предполагается, что к концу нашего века доля ядерного топлива в мировой структуре топливного баланса может составить около 20%, а к 2100 г. — до 60%. Развитие ядерной энергетики определяется прежде всего возможностью полного использования природных урановых месторождений пока что на атомных электростанциях, в реакторах на тепловых нейтронах потребляется большей частью уран-235, содержание которого в природных рудах не более 0,7%. Остальные 99,3% приходятся на долю неделящегося изотопа — урана-238, который непосредственно не может служить ядерным горючим. Однако уран-238 уже используется в урановых реакторах на быстрых нейтронах. где он превращается в новое искусственное ядерное горючее— плутоний-239. Наиболее эффективно сочетание реакторов на медленных нейтронах, использующих уран-235, с реакторами-размножителями на быстрых нейтронах, использующими уран-238, в которых нарабатывается плутоний-239. В таких системах ядерное горючее отдает в 20—30 раз больше энергии, чем в обычных ядерных реакторах, и привлекаются к использованию большие запасы бедных урановых руд. [c.35]


    Эта способность бора поглощать нейтроны определяет важную роль борсодержащих материалов в ядерной энергетике в качестве замедлителей ядерных процессов и в биологической защите. [c.436]

    Эта книга — результат многолетних усилий большого коллектива специалистов из самых различных регионов США. В подготовке участвовали ученые, и в том числе лауреат Нобелевской премии Глен Сиборг, учителя химии и методисты из многих штатов, консультанты в области здравоохранения, технологии, ядерной энергетики, переработки нефти, экологии, сельского хозяйства и т. д. Только список школ, где проводился педагогический эксперимент с целью предварительной оценки предложенных авторами текстов, занимает в американском издании полстраницы. Работа была организована Отделом образования Американского химического общества — мощной и эффективной организацией, объединяющей химиков США и располагающей крупными средствами, разветвленной структурой, широкими возможностями. [c.5]

    Следует отметить, что главной особенностью работы мембранных установок разделения, определяющей их широкое применение в различных отраслях ядерной энергетики, является надежность в работе. Модульность установки позволяет быстро наращивать или уменьшать производительность, появляется возможность создания мобильных установок для работы в аварийных условиях и т. д. [c.322]

    По масштабам производства на первом месте стоит применение экстракции в нефтяной, пищевой и коксохимической промышленности. Кроме того, экстракция получила разнообразное, хотя и меньшее по объему, применение в различных отраслях химической технологии органических производств (например, в фармацевтической промышленности) и еще меньшее в технологии неорганических производств. Новой и многообещающей областью применения жидкостной экстракции является быстро развивающаяся в настоящее время ядерная энергетика. Приготовление основных исходных растворов и вспомогательных материалов (имеется в виду производство естественных радиоактивных веществ), а также процессы регенерации продуктов распада, образующихся в атомном реакторе, в значительной степени основываются на экстракции. [c.379]

    Продукция. Нефтяной кокс — применяется в производстве анодов и графитированных электродов, используемых для электролитического получения алюминия, стали, магния, хлора и т. д., в производстве карбидов, в ядерной энергетике, в авиационной и ракетной технике, в электро- и радиотехнике, в металлургической промышленности, в производстве цветных металлов в качестве восстановителя и сульфидсодержащего материала. Характеристика коксов приведена в табл. 4.49, 4.50. [c.93]


    Необходимо отметить следующие недостатки АЭС, которые явились причиной развернувшейся в настоящее время борьбы общественности ряда стран против дальнейшего развития ядерной энергетики эксплуатация АЭС требует больших расходов воды высокая стоимость сооружения АЭС. Капитальные затраты на строительство АЭС примерно в 2- 2,5 раза выше, чем ТЭС эквивалентной мощности  [c.19]

    То, что добыча угля, скажем, опасна, не подвергается сомнению, но эта деятельность считается добровольной, тогда как риск, связанный с ядерной энергетикой, считается вынужденным, т. е. навязываемым проживающему вблизи ядерных объектов населению. [c.462]

    В других ситуациях, как, например, с ядерной энергетикой, преимущества которой рассматриваются общественностью как незначительные или вообще сомнительные, общественность требует достижения значительно меньших уровней риска, чем те, которые должны были в соответствии с методологией Ротшильда считаться подходящими пороговыми значениями. [c.468]

    Если тело погибшего извлечено из пожара, то вопрос в самом деле ясен. Однако если пострадавший был еще жив и погиб уже после пожара, то вопрос о признании пожара причиной смерти может быть сопряжен со значительными судебными трудностями, особенно если смерть наступила через несколько месяцев после пожара. Если же тем не менее для аварий с пожарами и взрывами о недвусмысленности все же можно говорить, так как для них случаи отложенных смертей относительно редки, то для токсических поражений картина качественно другая. Хорошо известно, что проблема отложенных э4>фектов составляет немалые трудности в ядерной энергетике, однако ядерные аварии не рассматриваются в нашей книге. [c.481]

    Алюминий высокой степени чистоты используют в ядерной энергетике, полупроводниковой электронике, радиолокации, для изготовления отражающих поверхностей рефлекторов и зеркал. В металлургической промышленности алюминий применяется в качестве восстановителя при получении ряда металлов (алюминотермия), раскисления стали, для сварки отдельных деталей. [c.16]

    Технический цирконий, применяемый преимущественно в качестве коррозионностойкого материала в химической промышленности [45], содержит до 2,5 % гафния, который трудно поддается отделению из-за сходства химических свойств циркония и гафния. Эта примесь не оказывает заметного влияния на коррозионные свойства циркония. Чистый металл с малым содержанием гафния (< 0,02 %) обладает малым Охватом тепловых нейтронов, что делает его особенно пригодным мя использования в ядерной энергетике.  [c.379]

    В связи с развитием ядерной энергетики полимерные материалы начали щироко применяться для сооружений, работающих в зоне активности (детали оборудования, изоляция, клеи). В последнем случае полимеры имеют практически монопольное применение. С использованием асфальтитов была получена клеевая композиция, которая до весьма высокой дозы 8-10 Гр не меняет адгезионной прочности к бетону и металлу [156]. В качестве основы клея был использован новый материал под названием альтин (157—158]. Клей имеет и то преимущество, что может наноситься на мокрую поверхность и отверждаться в интервале от —20 до 50 °С. [c.348]

    Неисчерпаемые возможности таит ядерная энергетика. Расчеты показали, что при правильном использовании урана можно не бояться его истощения в ближайшие тысячелетия. В перспективе получение энергии управляемым термоядерным синтезом ядер дейтерия и трития. [c.172]

    Успехи, достигнутые в коррозионной науке и технике машиностроения с момента выхода первого издания, требуют обновления большинства глав настояш,ей книги. Детально рассмотрены введенное недавно понятие критического потенциала питтингообразования и его применение на практике. Соответствующее место отводится также критическому потенциалу коррозионного растрескивания под напряжением и более подробному обзору различных подходов к изучению механизма этого вида коррозии. Раздел по коррозионной усталости написан о учетом новых данных и их интерпретации. В главу по пассивности включены результаты новых интересных экспериментов, проведенных в ряде лабораторий. Освещение вопросов межкристаллитной коррозии несенсибилизированных нержавеющих сталей и сплавов представляет интерес для ядерной энергетики. Книга включает лишь краткое описание диаграмм Пурбе в связи с тем, что подробный атлас таких диаграмм был опубликован профессором Пурбе в 1966 г. [c.13]

    Ракетная техника, космонавтика, авиастроение, ядерная энергетика, химическое машиностроение, автотранспорт, судостроение, электроника и многие другие отрасли промышленности ползали развитие в основном благодаря использованию разнообразных углеродных материа, юв. Эти материалы обладают высокой прочностью, жаростойкостью, жаропрочностью, термостойкостью (хорошим сопротивлением распространению трещин), регулируемыми в широких пределах показателями плотности, тепло- и электропроводностью, специальными оптическими и магнитными характеристиками и др. Однако эпоха научно-технической революции предъявляет не только исключительно высокие, но и быстро растущие требования к материалам для новой техники, характеризуется невиданными ранее темпами создания всё новых и новых прогрессивных материалов с самыми разнообразными свойствами. [c.4]

    Способность бора поглощать нейтроны определяет важную роль боросодержащих материалов в ядерной энергетике как замедлителей ядерных процессов и в качестве биологической защиты. [c.508]


    Аргон получают при разделении жидкого воздуха, а также из отходов газов синтеза аммиака. Аргон применяют в металлургических и химических процессах, требующих инертной атмосферы (аргоно-дуго-вая сварка алюминиевых и алюмо-магниевых сплавов), в светотехнике (флюоресцентные лампы, лампы накаливания, разрядные трубки), электротехнике, ядерной энергетике (ионизационные счетчики и камеры) и т. п. [c.611]

    I риведены в табл. 1.10. Вполне понятно, что ядерная энергетика развивается прежде всего в промышленно развитых странах. Они же являются и наиболее мощными энергопотребляющими странами мира. По потреблению энергоресурсов (табл.1.11) две крупные державы мира — США и бывший СССР — значительно опережают с>стальные страны. По показателю энергопотребления далее следуют Китай с более миллиардным населением, Япония и развитые капи — 1алистические страны Западной Европы. Надо отметить, что ТЭБ, рассчитываемый по производству энергоресурсов, значительно отличается от структуры их потребления, поскольку не все страны в состоянии обеспечить свои потребности в энергоресурсах собственного производства. Сравнение показателей ТЭБ развитых капиталистических стран по потреблению и производству энерго — ресурсов в 1987 г. приведено в табл. 1.12. Как видно из представлен— ных данных, во всех развитых капиталистических странах в структуре потребления преобладает доля нефти и газа (за исключением Норвегии). Этот показатель высок для Италии (82,4 % экв.) и Японии [c.24]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    Есть ли нсобхсдимость большей осведомленности общества в вопросах ядерной энергетики Лочему да или почему нет  [c.301]

    В 1950-х годах компании по производству коммунальных услуг отказывались развивать ядерную. энергетику до тех пор, пока Конгресс не одобрил акт Прайса-Андерсона в 1957 г. Этот закон ограничивает выплаты компаний или федерального правительства в случае, если произойдет авария на атомной станции, 560 миллионами долларов. Страховые компании не страхуют от опасности радиаци 1. [c.361]

    Стоит ли ядерная энергетика того риска, который она таит в себе Именно на нас лсжип ответственность решения, которое зависит от того, что мы хотим для себя и своего народа, и необходимо сделать так, чтобы наше желание знали тс, кто находится у власти. [c.361]

    Джиллнленд Э. Теплопередача Пер. с англ. — В кн. Научные и технические основы ядерной энергетики/ Под ред. К. Гудмена. М. Изд-во иностр. лит., 1948, с. 277—310. [c.135]

    Фортескью П. Выбор теплоносителя для высокотемпературного реактора Пер, с англ, — В кн, Вопросы ядерной энергетики. М. Изд-во иностр. лит., 1958, с. 60—68. [c.136]

    Ядерная энергетика. В середине 1987 г. в мире эксплуатировалось 389 ядерных реакторов общей мощностью 290 млн кВт, в строительстве находилось 146 энергоблоков мохцностью 140 млн кВт. Доля электроэнергии АЭС от общей выработки электроэ1зергии в 1986 г. составила (в %) во Франции - 71, Бельгии - 65, Швещш - 42, Швейцарии - 40, Финляндии - 38, Болгарии - 32, Японии - 27 и в США - 16. По объему производства электроэнергии на АЭС СССР занимал третье место в мире после США и Франции. [c.18]

    Развитие ядерной энергетики обусловливается следующими основ-ньош достоинствами АЭС  [c.19]

    В данной книге автор, сообразуясь с поставленными целями, не рассматривает добывающие отрасли, такие, как добыча угля (угольная промышленность), сжигание топлив для получения пара (энергетика), плавление металлов (металлургия). Изготовление и переработка топливных элементов в ядерной энергетике относится к отраслям перерабабатывающей промышленности, однако в данной книге это не нашло отражения, поскольку в ней не затрагиваются проблемы опасностей, связанных с радиоактивностью. [c.15]

    Одним из обстоятельств, не рассмотренных в работе [Slovi ,1981], была осознанность необходимости подвергать себя риску. Люди считают автомобили предметами первой необходимости, а ядерную энергетику, скорее всего, нет. Поскольку автомобиль предоставляет столь высокий уровень удобств для их владельцев, возможность смерти, потери трудоспособности или травмы, связанная с его использованием, просто игнорируется. В противоположность этому общественность в США и Великобритании, например, убеждена, что электроэнергия может производиться с помощью традиционных (неядерных [c.462]

    На самом деле ограничения методов, подобных методу дерева неполадок и являющихся по существу методами решения обратной задачи, имеют несколько отличную от указываемой ниже автором природу. В конечном итоге, если абстрагироваться от конкретики, суть затруднений всегда одна и та же - некорректность (по Ж. Адамару) поставленной задачи. Это явление хорошо известно, и в промышленной безопасности такой некорректно поставленной будет, например, задача восстановления места расположения и структуры источника выброса дрейфующего парового облака. (Уже за время t, Tai oe, что ti D-L, где L - размер облака, а D - коэффициент турбулентной диффузии, полностью "стирается" память об условиях возникновения облака.) Однако на основе сказанного было бы неправильным полагать ограниченной применимость метода дерева неполадок к задачам оценки риска химических и нефтехимических производств. Просто областью применения этого метода является определение характеристик (частота возникновения, вероятность и т. д.) инициирующих аварию деструктивных явлений, и, как показывает опыт многих проведенных исследований, метод деревьев неполадок можно считать в целом неплохо подходящим для описания фазы инициирования аварии, т. е. фазы накопления дефектов в оборудовании и ошибок персонала (о включении в метод деревьев неполадок "человеческого фактора см. [Доброленский,1975]). Что же касается развития аварии и ее выхода за промышленную площадку, то здесь для построения возможных сценариев развития поражения (т. е. воспроизведения динамики аварии) и расчета последствий адекватными являются прямые методы (такие, например, как метод дерева событий). Сопряжение двух этих различных по используемому математическому аппарату методов описания аварии, необходимое для определения собственно риска (и столь сложное, например, в ядерной энергетике), оказывается для химических производств возможным эффективно реализовать за счет специфики промышленных предприятий - для них конструктивно описывается вся совокупность инициирующих аварию деструктивных явлений, и стало быть, можно рассмотреть все множество возможных аварий. Именно это свойство - способность описать все возможные причины интересующего нас верхнего нежелательного события - в первую очередь привлекает исследователей в методе дерева неполадок. - Прим. ред. [c.476]

    Перестройка энергетики с переходом на новые источники энергии, т. е. радикальное решение топливно-энергетической проблемы, имеет два наиболее реальных направления 1) широкое развитие ядерной энергетики и 2) резкое увеличение потребления твердого топлива, мощность запасов которого на несколько порядков выше, чем нефти и газа (см. табл. 2). Энергетические установки, использующие гидравлическую энергию, теплоту земных недр, солнечную энергию, энергию ветров, морских приливов, не потребляют ископаемого топлива, но по мощности не могут конку-р1фовать с ядерной энергетикой. Такие установки могут применяться в тех районах, где это экономически целесообразно (например, использование солнечной энергии в Среднеазиатских республиках СССР, в странах Ближнего Востока и т. д.). [c.35]

    Ядерная энергетика служит мощным средством технического прогресса, в частности повышения эффективности химико-технологических процессов. При широком развитии ядерной энергетики появляется возможность использовать теплоту отходящих газов ядерных реакторов (с температурой 900—1000°С) в металлургии, при переработке твердого топлива, в химической промышленности и других отраслях промышленности особенно перспективно использование отбросной теплоты ядерных реакторов для крупномасштабных химико-технологических процессов, например для производства водорода и сиитез-газа (смесей СО и Нг) путем конверсии углеводородов с водяным паром. Водород — промежуточный продукт, который может применяться в качестве энергоносителя, восстановителя в металлургии и химического сырья. Водород и продукты его переработки (метанол) рассматривают как оптимальное моторное топливо будущего для транспорта и быта (см. с. 71). [c.36]

    Перевод и редактирование Справочника осуществлены совместно коллективом специалистов из Института высоких температур АН СССР, Института тепло- и ма -сообмеиа АН БССР и Института ядерной энергетики АН БССР. [c.3]

    Нефтяной кокс употребляется в ка естве восстановителя в химической технологии, для приготовлегия анодов в металлургии, для получения ВеаС, Т С в авиационной и ракетной технике, в производстве абразивов и огнеупоров (81С, В4С, Т1С), в ядерной энергетике (В4С, 2гС), а также в виде сырья для получения конструкционных углеграфитовых материалов, которые применяются для сооружения и футеровки химической аппаратуры и оборудования. Чистый углерод используется в качестве замедлителя нейтронов в атомных реакторах. [c.235]

    Высокая стойкость циркония в деаэрированной горячей воде и паре представляет особую ценность при использовании в ядерной энергетике. Металл или его сплавы, как правило, заметно не разрушаются в течение длительного времени при температурах ниже 425 °С. Характерно, что скорость коррозии невелика в некоторый начальный период. Однако после определенной продолжительности контакта (от минут до нескольких лет — в зависимости от температуры) скорость коррозии резко возрастает. Как отмечают, это явление наблюдается на чистом и содержащем примеси цирконии после того, как потери металла достигают 3,5— 5,0 г/м . Аналогичное повторное ускорение окисления может происходить при еще больших потерях металла [551. Если цирконий содержит примеси азота (>0,005 %) или углерода (>0,04 % то эти процессы протекают при более низких температурах [56 Негативное влияние азота ослабляют, легируя металл 1,5—2,5 % олова и уменьшая содержание железа, никеля и хрома. Такие сплавы называют циркалоями (см. выше). [c.380]

    Ракетная техника, космонавтика, авиастроение, ядерная энергетика, химическое машиностроение, автотранспорт, судостроение, электроника и многие другие отрасли промышленности нуждаются в материалах, обладающих высокой прочностью, жаростойкостью, жаропрочностью и термостойкостью (хорошим сопротивлением распространению трещин), малой плотностью, регулируемыми в широких пределах показателями тепло- и электропроводности, специальными оптическими и магнитными характеристиками и др. Многие из существующих промышленных MarepnajwB уже не могут удовлетворить эти запросы. [c.68]

    Стрем ител1>ный рост производства особо чистых веществ в пятидесятых годах был вызван развитием ядерной энергетики, которой потребовались материалы и вещества с необычно высокой для того времени степенью чистоты, например уран, содержащий не более 100 млрд. Или даже 10 млрд. примесей. Еще более высокие требования к чистоте веществ стали предъявляться в последние д( сятилетия в связи с развитием электронной промышленности. Чистота Еолупроводниковых материалов, таких, как Ое или З , должна быть в 1000 раз больше, чем указанные для урана значения. Содержание некоторых примесей в них не должно превышать 10- млрд.- (10- %). Аналогичные требования предъявляют к химическим реактивам, применяемым в ходе обработки полупроводниковых элементов, таким, как кислоты, соли и органические растворителя. [c.411]


Библиография для Ядерная энергетика: [c.265]    [c.654]   
Смотреть страницы где упоминается термин Ядерная энергетика: [c.22]    [c.24]    [c.36]    [c.53]    [c.16]    [c.57]    [c.60]    [c.36]    [c.30]    [c.25]    [c.51]   
Смотреть главы в:

Общая химия Изд2 -> Ядерная энергетика

Курс общей химии -> Ядерная энергетика

Курс общей химии -> Ядерная энергетика

Предмет химии -> Ядерная энергетика


Новое в технологии соединений фтора (1984) -- [ c.23 ]

Общая химическая технология Том 2 (1959) -- [ c.271 ]




ПОИСК







© 2022 chem21.info Реклама на сайте